Goto

Collaborating Authors

 Kirtania, Shashank


Activation Steering in Neural Theorem Provers

arXiv.org Artificial Intelligence

Large Language Models (LLMs) have shown promise in proving formal theorems using proof assistants like Lean. However, current state of the art language models struggle to predict next step in proofs leading practitioners to use different sampling techniques to improve LLMs capabilities. We observe that the LLM is capable of predicting the correct tactic; however, it faces challenges in ranking it appropriately within the set of candidate tactics, affecting the overall selection process. To overcome this hurdle we use activation steering to guide LLMs responses to improve the generations at the time of inference. Our results suggest that activation steering offers a promising lightweight alternative to specialized fine-tuning for enhancing theorem proving capabilities in LLMs, particularly valuable in resource-constrained environments. Interactive proof assistants such as Lean de Moura et al. (2015), Isabelle Wenzel et al. (2008), and Coq Barras et al. (1999) enable the formal verification of mathematical proofs and software by leveraging specialized programming languages Avigad (2023); Ringer et al. (2019).


STACKFEED: Structured Textual Actor-Critic Knowledge Base Editing with FeedBack

arXiv.org Artificial Intelligence

Large Language Models (LLMs) often generate incorrect or outdated information, especially in low-resource settings or when dealing with private data. To address this, Retrieval-Augmented Generation (RAG) uses external knowledge bases (KBs), but these can also suffer from inaccuracies. We introduce STACKFEED, a novel Structured Textual Actor-Critic Knowledge base editing with FEEDback approach that iteratively refines the KB based on expert feedback using a multi-actor, centralized critic reinforcement learning framework. Each document is assigned to an actor, modeled as a ReACT agent, which performs structured edits based on document-specific targeted instructions from a centralized critic. Experimental results show that STACKFEED significantly improves KB quality and RAG system performance, enhancing accuracy by up to 8% over baselines.


LOGIC-LM++: Multi-Step Refinement for Symbolic Formulations

arXiv.org Artificial Intelligence

In this paper we examine the limitations of Large Language Models (LLMs) for complex reasoning tasks. Although recent works have started to employ formal languages as an intermediate representation for reasoning tasks, they often face challenges in accurately generating and refining these formal specifications to ensure correctness. To address these issues, this paper proposes Logic-LM++, an improvement on Logic-LM . It uses the ability of LLMs to do pairwise comparisons, allowing the evaluation of the refinements suggested by the LLM. The paper demonstrates that Logic-LM++ outperforms Logic-LM and other contemporary techniques across natural language reasoning tasks on three datasets, FOLIO, ProofWriter and AR-LSAT, with an average improvement of 18.5% on standard prompting, 12.3% on chain of thought prompting and 5% on Logic-LM.


METAREFLECTION: Learning Instructions for Language Agents using Past Reflections

arXiv.org Artificial Intelligence

Despite the popularity of Large Language Models (LLMs), crafting specific prompts for LLMs to perform particular tasks remains challenging. Users often engage in multiple conversational turns with an LLM-based agent to accomplish their intended task. Recent studies have demonstrated that linguistic feedback, in the form of self-reflections generated by the model, can work as reinforcement during these conversations, thus enabling quicker convergence to the desired outcome. Motivated by these findings, we introduce METAREFLECTION, a novel technique that learns general prompt instructions for a specific domain from individual self-reflections gathered during a training phase. We evaluate our technique in two domains: Infrastructure as Code (IAC) vulnerability detection and question-answering (QA) using REACT and COT. Our results demonstrate a notable improvement, with METARELECTION outperforming GPT-4 by 16.82% (IAC), 31.33% (COT), and 15.42% (REACT), underscoring the potential of METAREFLECTION as a viable method for enhancing the efficiency of LLMs.


DWT-CompCNN: Deep Image Classification Network for High Throughput JPEG 2000 Compressed Documents

arXiv.org Artificial Intelligence

For any digital application with document images such as retrieval, the classification of document images becomes an essential stage. Conventionally for the purpose, the full versions of the documents, that is the uncompressed document images make the input dataset, which poses a threat due to the big volume required to accommodate the full versions of the documents. Therefore, it would be novel, if the same classification task could be accomplished directly (with some partial decompression) with the compressed representation of documents in order to make the whole process computationally more efficient. In this research work, a novel deep learning model, DWT CompCNN is proposed for classification of documents that are compressed using High Throughput JPEG 2000 (HTJ2K) algorithm. The proposed DWT-CompCNN comprises of five convolutional layers with filter sizes of 16, 32, 64, 128, and 256 consecutively for each increasing layer to improve learning from the wavelet coefficients extracted from the compressed images. Experiments are performed on two benchmark datasets- Tobacco-3482 and RVL-CDIP, which demonstrate that the proposed model is time and space efficient, and also achieves a better classification accuracy in compressed domain.