Kirschke, Jan
PARASIDE: An Automatic Paranasal Sinus Segmentation and Structure Analysis Tool for MRI
Möller, Hendrik, Krautschick, Lukas, Atad, Matan, Graf, Robert, Busch, Chia-Jung, Beule, Achim, Scharf, Christian, Kaderali, Lars, Menze, Bjoern, Rueckert, Daniel, Kirschke, Jan, Schwitzing, Fabian
Chronic rhinosinusitis (CRS) is a common and persistent sinus imflammation that affects 5 - 12\% of the general population. It significantly impacts quality of life and is often difficult to assess due to its subjective nature in clinical evaluation. We introduce PARASIDE, an automatic tool for segmenting air and soft tissue volumes of the structures of the sinus maxillaris, frontalis, sphenodalis and ethmoidalis in T1 MRI. By utilizing that segmentation, we can quantify feature relations that have been observed only manually and subjectively before. We performed an exemplary study and showed both volume and intensity relations between structures and radiology reports. While the soft tissue segmentation is good, the automated annotations of the air volumes are excellent. The average intensity over air structures are consistently below those of the soft tissues, close to perfect separability. Healthy subjects exhibit lower soft tissue volumes and lower intensities. Our developed system is the first automated whole nasal segmentation of 16 structures, and capable of calculating medical relevant features such as the Lund-Mackay score.
Enhancing Interpretability of Vertebrae Fracture Grading using Human-interpretable Prototypes
Sinhamahapatra, Poulami, Shit, Suprosanna, Sekuboyina, Anjany, Husseini, Malek, Schinz, David, Lenhart, Nicolas, Menze, Joern, Kirschke, Jan, Roscher, Karsten, Guennemann, Stephan
Vertebral fracture grading classifies the severity of vertebral fractures, which is a challenging task in medical imaging and has recently attracted Deep Learning (DL) models. Only a few works attempted to make such models human-interpretable despite the need for transparency and trustworthiness in critical use cases like DL-assisted medical diagnosis. Moreover, such models either rely on post-hoc methods or additional annotations. In this work, we propose a novel interpretable-by-design method, ProtoVerse, to find relevant sub-parts of vertebral fractures (prototypes) that reliably explain the model's decision in a human-understandable way. Specifically, we introduce a novel diversity-promoting loss to mitigate prototype repetitions in small datasets with intricate semantics. We have experimented with the VerSe'19 dataset and outperformed the existing prototype-based method. Further, our model provides superior interpretability against the post-hoc method.
The Brain Tumor Segmentation (BraTS) Challenge 2023: Local Synthesis of Healthy Brain Tissue via Inpainting
Kofler, Florian, Meissen, Felix, Steinbauer, Felix, Graf, Robert, Oswald, Eva, de da Rosa, Ezequiel, Li, Hongwei Bran, Baid, Ujjwal, Hoelzl, Florian, Turgut, Oezguen, Horvath, Izabela, Waldmannstetter, Diana, Bukas, Christina, Adewole, Maruf, Anwar, Syed Muhammad, Janas, Anastasia, Kazerooni, Anahita Fathi, LaBella, Dominic, Moawad, Ahmed W, Farahani, Keyvan, Eddy, James, Bergquist, Timothy, Chung, Verena, Shinohara, Russell Takeshi, Dako, Farouk, Wiggins, Walter, Reitman, Zachary, Wang, Chunhao, Liu, Xinyang, Jiang, Zhifan, Familiar, Ariana, Conte, Gian-Marco, Johanson, Elaine, Meier, Zeke, Davatzikos, Christos, Freymann, John, Kirby, Justin, Bilello, Michel, Fathallah-Shaykh, Hassan M, Wiest, Roland, Kirschke, Jan, Colen, Rivka R, Kotrotsou, Aikaterini, Lamontagne, Pamela, Marcus, Daniel, Milchenko, Mikhail, Nazeri, Arash, Weber, Marc-André, Mahajan, Abhishek, Mohan, Suyash, Mongan, John, Hess, Christopher, Cha, Soonmee, Villanueva-Meyer, Javier, Colak, Errol, Crivellaro, Priscila, Jakab, Andras, Albrecht, Jake, Anazodo, Udunna, Aboian, Mariam, Iglesias, Juan Eugenio, Van Leemput, Koen, Bakas, Spyridon, Rueckert, Daniel, Wiestler, Benedikt, Ezhov, Ivan, Piraud, Marie, Menze, Bjoern
A myriad of algorithms for the automatic analysis of brain MR images is available to support clinicians in their decision-making. For brain tumor patients, the image acquisition time series typically starts with a scan that is already pathological. This poses problems, as many algorithms are designed to analyze healthy brains and provide no guarantees for images featuring lesions. Examples include but are not limited to algorithms for brain anatomy parcellation, tissue segmentation, and brain extraction. To solve this dilemma, we introduce the BraTS 2023 inpainting challenge. Here, the participants' task is to explore inpainting techniques to synthesize healthy brain scans from lesioned ones. The following manuscript contains the task formulation, dataset, and submission procedure. Later it will be updated to summarize the findings of the challenge. The challenge is organized as part of the BraTS 2023 challenge hosted at the MICCAI 2023 conference in Vancouver, Canada.
blob loss: instance imbalance aware loss functions for semantic segmentation
Kofler, Florian, Shit, Suprosanna, Ezhov, Ivan, Fidon, Lucas, Horvath, Izabela, Al-Maskari, Rami, Li, Hongwei, Bhatia, Harsharan, Loehr, Timo, Piraud, Marie, Erturk, Ali, Kirschke, Jan, Peeken, Jan C., Vercauteren, Tom, Zimmer, Claus, Wiestler, Benedikt, Menze, Bjoern
Deep convolutional neural networks (CNN) have proven to be remarkably effective in semantic segmentation tasks. Most popular loss functions were introduced targeting improved volumetric scores, such as the Dice coefficient (DSC). By design, DSC can tackle class imbalance, however, it does not recognize instance imbalance within a class. As a result, a large foreground instance can dominate minor instances and still produce a satisfactory DSC. Nevertheless, detecting tiny instances is crucial for many applications, such as disease monitoring. For example, it is imperative to locate and surveil small-scale lesions in the follow-up of multiple sclerosis patients. We propose a novel family of loss functions, \emph{blob loss}, primarily aimed at maximizing instance-level detection metrics, such as F1 score and sensitivity. \emph{Blob loss} is designed for semantic segmentation problems where detecting multiple instances matters. We extensively evaluate a DSC-based \emph{blob loss} in five complex 3D semantic segmentation tasks featuring pronounced instance heterogeneity in terms of texture and morphology. Compared to soft Dice loss, we achieve 5% improvement for MS lesions, 3% improvement for liver tumor, and an average 2% improvement for microscopy segmentation tasks considering F1 score.
Approaching Peak Ground Truth
Kofler, Florian, Wahle, Johannes, Ezhov, Ivan, Wagner, Sophia, Al-Maskari, Rami, Gryska, Emilia, Todorov, Mihail, Bukas, Christina, Meissen, Felix, Peng, Tingying, Ertürk, Ali, Rueckert, Daniel, Heckemann, Rolf, Kirschke, Jan, Zimmer, Claus, Wiestler, Benedikt, Menze, Bjoern, Piraud, Marie
Machine learning models are typically evaluated by computing similarity with reference annotations and trained by maximizing similarity with such. Especially in the biomedical domain, annotations are subjective and suffer from low inter- and intra-rater reliability. Since annotations only reflect one interpretation of the real world, this can lead to sub-optimal predictions even though the model achieves high similarity scores. Here, the theoretical concept of PGT is introduced. PGT marks the point beyond which an increase in similarity with the \emph{reference annotation} stops translating to better RWMP. Additionally, a quantitative technique to approximate PGT by computing inter- and intra-rater reliability is proposed. Finally, four categories of PGT-aware strategies to evaluate and improve model performance are reviewed.
Deep Quality Estimation: Creating Surrogate Models for Human Quality Ratings
Kofler, Florian, Ezhov, Ivan, Fidon, Lucas, Horvath, Izabela, de la Rosa, Ezequiel, LaMaster, John, Li, Hongwei, Finck, Tom, Shit, Suprosanna, Paetzold, Johannes, Bakas, Spyridon, Piraud, Marie, Kirschke, Jan, Vercauteren, Tom, Zimmer, Claus, Wiestler, Benedikt, Menze, Bjoern
Human ratings are abstract representations of segmentation quality. To approximate human quality ratings on scarce expert data, we train surrogate quality estimation models. We evaluate on a complex multi-class segmentation problem, specifically glioma segmentation, following the BraTS annotation protocol. The training data features quality ratings from 15 expert neuroradiologists on a scale ranging from 1 to 6 stars for various computer-generated and manual 3D annotations. Even though the networks operate on 2D images and with scarce training data, we can approximate segmentation quality within a margin of error comparable to human intra-rater reliability. Segmentation quality prediction has broad applications. While an understanding of segmentation quality is imperative for successful clinical translation of automatic segmentation quality algorithms, it can play an essential role in training new segmentation models. Due to the split-second inference times, it can be directly applied within a loss function or as a fully-automatic dataset curation mechanism in a federated learning setting.
Identifying the Best Machine Learning Algorithms for Brain Tumor Segmentation, Progression Assessment, and Overall Survival Prediction in the BRATS Challenge
Bakas, Spyridon, Reyes, Mauricio, Jakab, Andras, Bauer, Stefan, Rempfler, Markus, Crimi, Alessandro, Shinohara, Russell Takeshi, Berger, Christoph, Ha, Sung Min, Rozycki, Martin, Prastawa, Marcel, Alberts, Esther, Lipkova, Jana, Freymann, John, Kirby, Justin, Bilello, Michel, Fathallah-Shaykh, Hassan, Wiest, Roland, Kirschke, Jan, Wiestler, Benedikt, Colen, Rivka, Kotrotsou, Aikaterini, Lamontagne, Pamela, Marcus, Daniel, Milchenko, Mikhail, Nazeri, Arash, Weber, Marc-Andre, Mahajan, Abhishek, Baid, Ujjwal, Kwon, Dongjin, Agarwal, Manu, Alam, Mahbubul, Albiol, Alberto, Albiol, Antonio, Alex, Varghese, Tran, Tuan Anh, Arbel, Tal, Avery, Aaron, B., Pranjal, Banerjee, Subhashis, Batchelder, Thomas, Batmanghelich, Kayhan, Battistella, Enzo, Bendszus, Martin, Benson, Eze, Bernal, Jose, Biros, George, Cabezas, Mariano, Chandra, Siddhartha, Chang, Yi-Ju, Chazalon, Joseph, Chen, Shengcong, Chen, Wei, Chen, Jefferson, Cheng, Kun, Christoph, Meinel, Chylla, Roger, Clérigues, Albert, Costa, Anthony, Cui, Xiaomeng, Dai, Zhenzhen, Dai, Lutao, Deutsch, Eric, Ding, Changxing, Dong, Chao, Dudzik, Wojciech, Estienne, Théo, Shin, Hyung Eun, Everson, Richard, Fabrizio, Jonathan, Fang, Longwei, Feng, Xue, Fidon, Lucas, Fridman, Naomi, Fu, Huan, Fuentes, David, Gering, David G, Gao, Yaozong, Gates, Evan, Gholami, Amir, Gong, Mingming, González-Villá, Sandra, Pauloski, J. Gregory, Guan, Yuanfang, Guo, Sheng, Gupta, Sudeep, Thakur, Meenakshi H, Maier-Hein, Klaus H., Han, Woo-Sup, He, Huiguang, Hernández-Sabaté, Aura, Herrmann, Evelyn, Himthani, Naveen, Hsu, Winston, Hsu, Cheyu, Hu, Xiaojun, Hu, Xiaobin, Hu, Yan, Hu, Yifan, Hua, Rui, Huang, Teng-Yi, Huang, Weilin, Huo, Quan, HV, Vivek, Isensee, Fabian, Islam, Mobarakol, Albiol, Francisco J., Wang, Chiatse J., Jambawalikar, Sachin, Jose, V Jeya Maria, Jian, Weijian, Jin, Peter, Jungo, Alain, Nuechterlein, Nicholas K, Kao, Po-Yu, Kermi, Adel, Keutzer, Kurt, Khened, Mahendra, Kickingereder, Philipp, King, Nik, Knapp, Haley, Knecht, Urspeter, Kohli, Lisa, Kong, Deren, Kong, Xiangmao, Koppers, Simon, Kori, Avinash, Krishnamurthi, Ganapathy, Kumar, Piyush, Kushibar, Kaisar, Lachinov, Dmitrii, Lee, Joon, Lee, Chengen, Lee, Yuehchou, Lefkovits, Szidonia, Lefkovits, Laszlo, Li, Tengfei, Li, Hongwei, Li, Wenqi, Li, Hongyang, Li, Xiaochuan, Lin, Zheng-Shen, Lin, Fengming, Liu, Chang, Liu, Boqiang, Liu, Xiang, Liu, Mingyuan, Liu, Ju, Lladó, Xavier, Luo, Lin, Iftekharuddin, Khan M., Tsai, Yuhsiang M., Ma, Jun, Ma, Kai, Mackie, Thomas, Mahmoudi, Issam, Marcinkiewicz, Michal, McKinley, Richard, Mehta, Sachin, Mehta, Raghav, Meier, Raphael, Merhof, Dorit, Meyer, Craig, Mitra, Sushmita, Moiyadi, Aliasgar, Mrukwa, Grzegorz, Monteiro, Miguel A. B., Myronenko, Andriy, Carver, Eric N, Nalepa, Jakub, Ngo, Thuyen, Niu, Chen, Oermann, Eric, Oliveira, Arlindo, Oliver, Arnau, Ourselin, Sebastien, French, Andrew P., Pound, Michael P., Pridmore, Tony P., Serrano-Rubio, Juan Pablo, Paragios, Nikos, Paschke, Brad, Pei, Linmim, Peng, Suting, Pham, Bao, Piella, Gemma, Pillai, G. N., Piraud, Marie, Popli, Anmol, Prčkovska, Vesna, Puch, Santi, Puybareau, Élodie, Qiao, Xu, Suter, Yannick R, Scott, Matthew R., Rane, Swapnil, Rebsamen, Michael, Ren, Hongliang, Ren, Xuhua, Rezaei, Mina, Lorenzo, Pablo Ribalta, Rippel, Oliver, Robert, Charlotte, Choudhury, Ahana Roy, Jackson, Aaron S., Manjunath, B. S., Salem, Mostafa, Salvi, Joaquim, Sánchez, Irina, Schellingerhout, Dawid, Shboul, Zeina, Shen, Haipeng, Shen, Dinggang, Shenoy, Varun, Shi, Feng, Shu, Hai, Snyder, James, Han, Il Song, Soni, Mehul, Stawiaski, Jean, Subramanian, Shashank, Sun, Li, Sun, Roger, Sun, Jiawei, Sun, Kay, Sun, Yu, Sun, Guoxia, Sun, Shuang, Park, Moo Sung, Szilagyi, Laszlo, Talbar, Sanjay, Tao, Dacheng, Tao, Dacheng, Khadir, Mohamed Tarek, Thakur, Siddhesh, Tochon, Guillaume, Tran, Tuan, Tseng, Kuan-Lun, Turlapov, Vadim, Tustison, Nicholas, Shankar, B. Uma, Vakalopoulou, Maria, Valverde, Sergi, Vanguri, Rami, Vasiliev, Evgeny, Vercauteren, Tom, Vidyaratne, Lasitha, Vivekanandan, Ajeet, Wang, Guotai, Wang, Qian, Wang, Weichung, Wen, Ning, Wen, Xin, Weninger, Leon, Wick, Wolfgang, Wu, Shaocheng, Wu, Qiang, Xia, Yong, Xu, Yanwu, Xu, Xiaowen, Xu, Peiyuan, Yang, Tsai-Ling, Yang, Xiaoping, Yang, Hao-Yu, Yang, Junlin, Yang, Haojin, Yao, Hongdou, Young-Moxon, Brett, Yue, Xiangyu, Zhang, Songtao, Zhang, Angela, Zhang, Kun, Zhang, Xuejie, Zhang, Lichi, Zhang, Xiaoyue, Zhao, Sicheng, Zhao, Yu, Zheng, Yefeng, Zhong, Liming, Zhou, Chenhong, Zhou, Xiaobing, Zhu, Hongtu, Zong, Weiwei, Kalpathy-Cramer, Jayashree, Farahani, Keyvan, Davatzikos, Christos, van Leemput, Koen, Menze, Bjoern
Gliomas are the most common primary brain malignancies, with different degrees of aggressiveness, variable prognosis and various heterogeneous histologic sub-regions, i.e., peritumoral edematous/invaded tissue, necrotic core, active and non-enhancing core. This intrinsic heterogeneity is also portrayed in their radio-phenotype, as their sub-regions are depicted by varying intensity profiles disseminated across multi-parametric magnetic resonance imaging (mpMRI) scans, reflecting varying biological properties. Their heterogeneous shape, extent, and location are some of the factors that make these tumors difficult to resect, and in some cases inoperable. The amount of resected tumor is a factor also considered in longitudinal scans, when evaluating the apparent tumor for potential diagnosis of progression. Furthermore, there is mounting evidence that accurate segmentation of the various tumor sub-regions can offer the basis for quantitative image analysis towards prediction of patient overall survival. This study assesses the state-of-the-art machine learning (ML) methods used for brain tumor image analysis in mpMRI scans, during the last seven instances of the International Brain Tumor Segmentation (BraTS) challenge, i.e. 2012-2018. Specifically, we focus on i) evaluating segmentations of the various glioma sub-regions in pre-operative mpMRI scans, ii) assessing potential tumor progression by virtue of longitudinal growth of tumor sub-regions, beyond use of the RECIST criteria, and iii) predicting the overall survival from pre-operative mpMRI scans of patients that undergone gross total resection. Finally, we investigate the challenge of identifying the best ML algorithms for each of these tasks, considering that apart from being diverse on each instance of the challenge, the multi-institutional mpMRI BraTS dataset has also been a continuously evolving/growing dataset.