Kirchhoff, Katrin
Zero-resource Speech Translation and Recognition with LLMs
Mundnich, Karel, Niu, Xing, Mathur, Prashant, Ronanki, Srikanth, Houston, Brady, Elluru, Veera Raghavendra, Das, Nilaksh, Hou, Zejiang, Huybrechts, Goeric, Bhatia, Anshu, Garcia-Romero, Daniel, Han, Kyu J., Kirchhoff, Katrin
Despite recent advancements in speech processing, zero-resource speech translation (ST) and automatic speech recognition (ASR) remain challenging problems. In this work, we propose to leverage a multilingual Large Language Model (LLM) to perform ST and ASR in languages for which the model has never seen paired audio-text data. We achieve this by using a pre-trained multilingual speech encoder, a multilingual LLM, and a lightweight adaptation module that maps the audio representations to the token embedding space of the LLM. We perform several experiments both in ST and ASR to understand how to best train the model and what data has the most impact on performance in previously unseen languages. In ST, our best model is capable to achieve BLEU scores over 23 in CoVoST2 for two previously unseen languages, while in ASR, we achieve WERs of up to 28.2\%. We finally show that the performance of our system is bounded by the ability of the LLM to output text in the desired language.
CriSPO: Multi-Aspect Critique-Suggestion-guided Automatic Prompt Optimization for Text Generation
He, Han, Liu, Qianchu, Xu, Lei, Shivade, Chaitanya, Zhang, Yi, Srinivasan, Sundararajan, Kirchhoff, Katrin
Existing automatic prompt engineering methods are typically designed for discriminative tasks, where new task prompts are iteratively refined with limited feedback from a single metric reflecting a single aspect. However, these approaches are suboptimal for generative tasks, which require more nuanced guidance beyond a single numeric metric to improve the prompt and optimize multiple aspects of the generated text. To address these challenges, we propose a novel multi-aspect Critique-Suggestion-guided automatic Prompt Optimization (CriSPO) approach. CriSPO introduces a critique-suggestion module as its core component. This module spontaneously discovers aspects, and compares generated and reference texts across these aspects, providing specific suggestions for prompt modification. These clear critiques and actionable suggestions guide a receptive optimizer module to make more substantial changes, exploring a broader and more effective search space. To further improve CriSPO with multi-metric optimization, we introduce an Automatic Suffix Tuning (AST) extension to enhance the performance of task prompts across multiple metrics. We evaluate CriSPO on 4 state-of-the-art LLMs across 4 summarization and 5 QA datasets. Extensive experiments show 3-4\% ROUGE score improvement on summarization and substantial improvement of various metrics on QA.
SpeechVerse: A Large-scale Generalizable Audio Language Model
Das, Nilaksh, Dingliwal, Saket, Ronanki, Srikanth, Paturi, Rohit, Huang, Zhaocheng, Mathur, Prashant, Yuan, Jie, Bekal, Dhanush, Niu, Xing, Jayanthi, Sai Muralidhar, Li, Xilai, Mundnich, Karel, Sunkara, Monica, Srinivasan, Sundararajan, Han, Kyu J, Kirchhoff, Katrin
Large language models (LLMs) have shown incredible proficiency in performing tasks that require semantic understanding of natural language instructions. Recently, many works have further expanded this capability to perceive multimodal audio and text inputs, but their capabilities are often limited to specific fine-tuned tasks such as automatic speech recognition and translation. We therefore develop SpeechVerse, a robust multi-task training and curriculum learning framework that combines pre-trained speech and text foundation models via a small set of learnable parameters, while keeping the pre-trained models frozen during training. The models are instruction finetuned using continuous latent representations extracted from the speech foundation model to achieve optimal zero-shot performance on a diverse range of speech processing tasks using natural language instructions. We perform extensive benchmarking that includes comparing our model performance against traditional baselines across several datasets and tasks. Furthermore, we evaluate the model's capability for generalized instruction following by testing on out-of-domain datasets, novel prompts, and unseen tasks. Our empirical experiments reveal that our multi-task SpeechVerse model is even superior to conventional task-specific baselines on 9 out of the 11 tasks.
SpeechGuard: Exploring the Adversarial Robustness of Multimodal Large Language Models
Peri, Raghuveer, Jayanthi, Sai Muralidhar, Ronanki, Srikanth, Bhatia, Anshu, Mundnich, Karel, Dingliwal, Saket, Das, Nilaksh, Hou, Zejiang, Huybrechts, Goeric, Vishnubhotla, Srikanth, Garcia-Romero, Daniel, Srinivasan, Sundararajan, Han, Kyu J, Kirchhoff, Katrin
Integrated Speech and Large Language Models (SLMs) that can follow speech instructions and generate relevant text responses have gained popularity lately. However, the safety and robustness of these models remains largely unclear. In this work, we investigate the potential vulnerabilities of such instruction-following speech-language models to adversarial attacks and jailbreaking. Specifically, we design algorithms that can generate adversarial examples to jailbreak SLMs in both white-box and black-box attack settings without human involvement. Additionally, we propose countermeasures to thwart such jailbreaking attacks. Our models, trained on dialog data with speech instructions, achieve state-of-the-art performance on spoken question-answering task, scoring over 80% on both safety and helpfulness metrics. Despite safety guardrails, experiments on jailbreaking demonstrate the vulnerability of SLMs to adversarial perturbations and transfer attacks, with average attack success rates of 90% and 10% respectively when evaluated on a dataset of carefully designed harmful questions spanning 12 different toxic categories. However, we demonstrate that our proposed countermeasures reduce the attack success significantly.
AutoGluon-Multimodal (AutoMM): Supercharging Multimodal AutoML with Foundation Models
Tang, Zhiqiang, Fang, Haoyang, Zhou, Su, Yang, Taojiannan, Zhong, Zihan, Hu, Tony, Kirchhoff, Katrin, Karypis, George
AutoGluon-Multimodal (AutoMM) is introduced as an open-source AutoML library designed specifically for multimodal learning. Distinguished by its exceptional ease of use, AutoMM enables fine-tuning of foundation models with just three lines of code. Supporting various modalities including image, text, and tabular data, both independently and in combination, the library offers a comprehensive suite of functionalities spanning classification, regression, object detection, semantic matching, and image segmentation. Experiments across diverse datasets and tasks showcases AutoMM's superior performance in basic classification and regression tasks compared to existing AutoML tools, while also demonstrating competitive results in advanced tasks, aligning with specialized toolboxes designed for such purposes.
Rethinking the Role of Scale for In-Context Learning: An Interpretability-based Case Study at 66 Billion Scale
Bansal, Hritik, Gopalakrishnan, Karthik, Dingliwal, Saket, Bodapati, Sravan, Kirchhoff, Katrin, Roth, Dan
Language models have been shown to perform better with an increase in scale on a wide variety of tasks via the in-context learning paradigm. In this paper, we investigate the hypothesis that the ability of a large language model to in-context learn-perform a task is not uniformly spread across all of its underlying components. Using a 66 billion parameter language model (OPT-66B) across a diverse set of 14 downstream tasks, we find this is indeed the case: $\sim$70% of attention heads and $\sim$20% of feed forward networks can be removed with minimal decline in task performance. We find substantial overlap in the set of attention heads (un)important for in-context learning across tasks and number of in-context examples. We also address our hypothesis through a task-agnostic lens, finding that a small set of attention heads in OPT-66B score highly on their ability to perform primitive induction operations associated with in-context learning, namely, prefix matching and copying. These induction heads overlap with task-specific important heads, reinforcing arguments by Olsson et al. (arXiv:2209.11895) regarding induction head generality to more sophisticated behaviors associated with in-context learning. Overall, our study provides several insights that indicate large language models may be under-trained for in-context learning and opens up questions on how to pre-train language models to more effectively perform in-context learning.
Don't Stop Self-Supervision: Accent Adaptation of Speech Representations via Residual Adapters
Bhatia, Anshu, Sinha, Sanchit, Dingliwal, Saket, Gopalakrishnan, Karthik, Bodapati, Sravan, Kirchhoff, Katrin
Speech representations learned in a self-supervised fashion from massive unlabeled speech corpora have been adapted successfully toward several downstream tasks. However, such representations may be skewed toward canonical data characteristics of such corpora and perform poorly on atypical, non-native accented speaker populations. With the state-of-the-art HuBERT model as a baseline, we propose and investigate self-supervised adaptation of speech representations to such populations in a parameter-efficient way via training accent-specific residual adapters. We experiment with 4 accents and choose automatic speech recognition (ASR) as the downstream task of interest. We obtain strong word error rate reductions (WERR) over HuBERT-large for all 4 accents, with a mean WERR of 22.7% with accent-specific adapters and a mean WERR of 25.1% if the entire encoder is accent-adapted. While our experiments utilize HuBERT and ASR as the downstream task, our proposed approach is both model and task-agnostic.
DCTX-Conformer: Dynamic context carry-over for low latency unified streaming and non-streaming Conformer
Huybrechts, Goeric, Ronanki, Srikanth, Li, Xilai, Nosrati, Hadis, Bodapati, Sravan, Kirchhoff, Katrin
Conformer-based end-to-end models have become ubiquitous these days and are commonly used in both streaming and non-streaming automatic speech recognition (ASR). Techniques like dual-mode and dynamic chunk training helped unify streaming and non-streaming systems. However, there remains a performance gap between streaming with a full and limited past context. To address this issue, we propose the integration of a novel dynamic contextual carry-over mechanism in a state-of-the-art (SOTA) unified ASR system. Our proposed dynamic context Conformer (DCTX-Conformer) utilizes a non-overlapping contextual carry-over mechanism that takes into account both the left context of a chunk and one or more preceding context embeddings. We outperform the SOTA by a relative 25.0% word error rate, with a negligible latency impact due to the additional context embeddings.
Mask The Bias: Improving Domain-Adaptive Generalization of CTC-based ASR with Internal Language Model Estimation
Das, Nilaksh, Sunkara, Monica, Bodapati, Sravan, Cai, Jinglun, Kulshreshtha, Devang, Farris, Jeff, Kirchhoff, Katrin
End-to-end ASR models trained on large amount of data tend to be implicitly biased towards language semantics of the training data. Internal language model estimation (ILME) has been proposed to mitigate this bias for autoregressive models such as attention-based encoder-decoder and RNN-T. Typically, ILME is performed by modularizing the acoustic and language components of the model architecture, and eliminating the acoustic input to perform log-linear interpolation with the text-only posterior. However, for CTC-based ASR, it is not as straightforward to decouple the model into such acoustic and language components, as CTC log-posteriors are computed in a non-autoregressive manner. In this work, we propose a novel ILME technique for CTC-based ASR models. Our method iteratively masks the audio timesteps to estimate a pseudo log-likelihood of the internal LM by accumulating log-posteriors for only the masked timesteps. Extensive evaluation across multiple out-of-domain datasets reveals that the proposed approach improves WER by up to 9.8% and OOV F1-score by up to 24.6% relative to Shallow Fusion, when only text data from target domain is available. In the case of zero-shot domain adaptation, with no access to any target domain data, we demonstrate that removing the source domain bias with ILME can still outperform Shallow Fusion to improve WER by up to 9.3% relative.
Device Directedness with Contextual Cues for Spoken Dialog Systems
Bekal, Dhanush, Srinivasan, Sundararajan, Bodapati, Sravan, Ronanki, Srikanth, Kirchhoff, Katrin
In this work, we define barge-in verification as a supervised learning task where audio-only information is used to classify user spoken dialogue into true and false barge-ins. Following the success of pre-trained models, we use low-level speech representations from a self-supervised representation learning model for our downstream classification task. Further, we propose a novel technique to infuse lexical information directly into speech representations to improve the domain-specific language information implicitly learned during pre-training. Experiments conducted on spoken dialog data show that our proposed model trained to validate barge-in entirely from speech representations is faster by 38% relative and achieves 4.5% relative F1 score improvement over a baseline LSTM model that uses both audio and Automatic Speech Recognition (ASR) 1-best hypotheses. On top of this, our best proposed model with lexically infused representations along with contextual features provides a further relative improvement of 5.7% in the F1 score but only 22% faster than the baseline.