Goto

Collaborating Authors

 Kingsbury, Brian


A Non-autoregressive Model for Joint STT and TTS

arXiv.org Artificial Intelligence

In this paper, we take a step towards jointly modeling automatic speech recognition (STT) and speech synthesis (TTS) in a fully non-autoregressive way. We develop a novel multimodal framework capable of handling the speech and text modalities as input either individually or together. The proposed model can also be trained with unpaired speech or text data owing to its multimodal nature. We further propose an iterative refinement strategy to improve the STT and TTS performance of our model such that the partial hypothesis at the output can be fed back to the input of our model, thus iteratively improving both STT and TTS predictions. We show that our joint model can effectively perform both STT and TTS tasks, outperforming the STT-specific baseline in all tasks and performing competitively with the TTS-specific baseline across a wide range of evaluation metrics.


Bilevel Joint Unsupervised and Supervised Training for Automatic Speech Recognition

arXiv.org Artificial Intelligence

In this paper, we propose a bilevel joint unsupervised and supervised training (BL-JUST) framework for automatic speech recognition. Compared to the conventional pre-training and fine-tuning strategy which is a disconnected two-stage process, BL-JUST tries to optimize an acoustic model such that it simultaneously minimizes both the unsupervised and supervised loss functions. Because BL-JUST seeks matched local optima of both loss functions, acoustic representations learned by the acoustic model strike a good balance between being generic and task-specific. We solve the BL-JUST problem using penalty-based bilevel gradient descent and evaluate the trained deep neural network acoustic models on various datasets with a variety of architectures and loss functions. We show that BL-JUST can outperform the widely-used pre-training and fine-tuning strategy and some other popular semi-supervised techniques.


Exploring the limits of decoder-only models trained on public speech recognition corpora

arXiv.org Artificial Intelligence

The emergence of industrial-scale speech recognition (ASR) models such as Whisper and USM, trained on 1M hours of weakly labelled and 12M hours of audio only proprietary data respectively, has led to a stronger need for large scale public ASR corpora and competitive open source pipelines. Unlike the said models, large language models are typically based on Transformer decoders, and it remains unclear if decoder-only models trained on public data alone can deliver competitive performance. In this work, we investigate factors such as choice of training datasets and modeling components necessary for obtaining the best performance using public English ASR corpora alone. Our Decoder-Only Transformer for ASR (DOTA) model comprehensively outperforms the encoder-decoder open source replication of Whisper (OWSM) on nearly all English ASR benchmarks and outperforms Whisper large-v3 on 7 out of 15 test sets. We release our codebase and model checkpoints under permissive license.


Joint Unsupervised and Supervised Training for Automatic Speech Recognition via Bilevel Optimization

arXiv.org Artificial Intelligence

BL-JUST employs a lower and upper level optimization In general, bilevel optimization problems are optimization problems with an unsupervised loss and a supervised loss respectively, where the feasible set is determined (in part) using the solution leveraging recent advances in penalty-based bilevel optimization to set of a second optimization problem [10]. Determining the feasible solve this challenging ASR problem with affordable complexity and set is generally called the lower-level problem and the second parametric rigorous convergence guarantees. To evaluate BL-JUST, extensive optimization problem is called the upper-level problem [31, 29].


Soft Random Sampling: A Theoretical and Empirical Analysis

arXiv.org Artificial Intelligence

Soft random sampling (SRS) is a simple yet effective approach for efficient training of large-scale deep neural networks when dealing with massive data. SRS selects a subset uniformly at random with replacement from the full data set in each epoch. In this paper, we conduct a theoretical and empirical analysis of SRS. First, we analyze its sampling dynamics including data coverage and occupancy. Next, we investigate its convergence with non-convex objective functions and give the convergence rate. Finally, we provide its generalization performance. We empirically evaluate SRS for image recognition on CIFAR10 and automatic speech recognition on Librispeech and an in-house payload dataset to demonstrate its effectiveness. Compared to existing coreset-based data selection methods, SRS offers a better accuracy-efficiency trade-off. Especially on real-world industrial scale data sets, it is shown to be a powerful training strategy with significant speedup and competitive performance with almost no additional computing cost.


Semi-Autoregressive Streaming ASR With Label Context

arXiv.org Artificial Intelligence

Non-autoregressive (NAR) modeling has gained significant interest in speech processing since these models achieve dramatically lower inference time than autoregressive (AR) models while also achieving good transcription accuracy. Since NAR automatic speech recognition (ASR) models must wait for the completion of the entire utterance before processing, some works explore streaming NAR models based on blockwise attention for low-latency applications. However, streaming NAR models significantly lag in accuracy compared to streaming AR and non-streaming NAR models. To address this, we propose a streaming "semi-autoregressive" ASR model that incorporates the labels emitted in previous blocks as additional context using a Language Model (LM) subnetwork. We also introduce a novel greedy decoding algorithm that addresses insertion and deletion errors near block boundaries while not significantly increasing the inference time. Experiments show that our method outperforms the existing streaming NAR model by 19% relative on Tedlium2, 16%/8% on Librispeech-100 clean/other test sets, and 19%/8% on the Switchboard(SWB) / Callhome(CH) test sets. It also reduced the accuracy gap with streaming AR and non-streaming NAR models while achieving 2.5x lower latency. We also demonstrate that our approach can effectively utilize external text data to pre-train the LM subnetwork to further improve streaming ASR accuracy.


Comparison of Multilingual Self-Supervised and Weakly-Supervised Speech Pre-Training for Adaptation to Unseen Languages

arXiv.org Artificial Intelligence

Recent models such as XLS-R and Whisper have made multilingual speech technologies more accessible by pre-training on audio from around 100 spoken languages each. However, there are thousands of spoken languages worldwide, and adapting to new languages is an important problem. In this work, we aim to understand which model adapts better to languages unseen during pre-training. We fine-tune both models on 13 unseen languages and 18 seen languages. Our results show that the number of hours seen per language and language family during pre-training is predictive of how the models compare, despite the significant differences in the pre-training methods.


High-Dimensional Smoothed Entropy Estimation via Dimensionality Reduction

arXiv.org Artificial Intelligence

We study the problem of overcoming exponential sample complexity in differential entropy estimation under Gaussian convolutions. Specifically, we consider the estimation of the differential entropy $h(X+Z)$ via $n$ independently and identically distributed samples of $X$, where $X$ and $Z$ are independent $D$-dimensional random variables with $X$ sub-Gaussian with bounded second moment and $Z\sim\mathcal{N}(0,\sigma^2I_D)$. Under the absolute-error loss, the above problem has a parametric estimation rate of $\frac{c^D}{\sqrt{n}}$, which is exponential in data dimension $D$ and often problematic for applications. We overcome this exponential sample complexity by projecting $X$ to a low-dimensional space via principal component analysis (PCA) before the entropy estimation, and show that the asymptotic error overhead vanishes as the unexplained variance of the PCA vanishes. This implies near-optimal performance for inherently low-dimensional structures embedded in high-dimensional spaces, including hidden-layer outputs of deep neural networks (DNN), which can be used to estimate mutual information (MI) in DNNs. We provide numerical results verifying the performance of our PCA approach on Gaussian and spiral data. We also apply our method to analysis of information flow through neural network layers (c.f. information bottleneck), with results measuring mutual information in a noisy fully connected network and a noisy convolutional neural network (CNN) for MNIST classification.


C2KD: Cross-Lingual Cross-Modal Knowledge Distillation for Multilingual Text-Video Retrieval

arXiv.org Artificial Intelligence

Multilingual text-video retrieval methods have improved significantly in recent years, but the performance for other languages lags behind English. We propose a Cross-Lingual Cross-Modal Knowledge Distillation method to improve multilingual text-video retrieval. Inspired by the fact that English text-video retrieval outperforms other languages, we train a student model using input text in different languages to match the cross-modal predictions from teacher models using input text in English. We propose a cross entropy based objective which forces the distribution over the student's text-video similarity scores to be similar to those of the teacher models. We introduce a new multilingual video dataset, Multi-YouCook2, by translating the English captions in the YouCook2 video dataset to 8 other languages. Our method improves multilingual text-video retrieval performance on Multi-YouCook2 and several other datasets such as Multi-MSRVTT and VATEX. We also conducted an analysis on the effectiveness of different multilingual text models as teachers. The code, models, and dataset are available at https://github.com/roudimit/c2kd.


Reducing Exposure Bias in Training Recurrent Neural Network Transducers

arXiv.org Artificial Intelligence

When recurrent neural network transducers (RNNTs) are trained using the typical maximum likelihood criterion, the prediction network is trained only on ground truth label sequences. This leads to a mismatch during inference, known as exposure bias, when the model must deal with label sequences containing errors. In this paper we investigate approaches to reducing exposure bias in training to improve the generalization of RNNT models for automatic speech recognition (ASR). A label-preserving input perturbation to the prediction network is introduced. The input token sequences are perturbed using SwitchOut and scheduled sampling based on an additional token language model. Experiments conducted on the 300-hour Switchboard dataset demonstrate their effectiveness. By reducing the exposure bias, we show that we can further improve the accuracy of a high-performance RNNT ASR model and obtain state-of-the-art results on the 300-hour Switchboard dataset.