Goto

Collaborating Authors

 King, Irwin


Knowledge Transfer via Multi-Head Feature Adaptation for Whole Slide Image Classification

arXiv.org Artificial Intelligence

Transferring prior knowledge from a source domain to the same or similar target domain can greatly enhance the performance of models on the target domain. However, it is challenging to directly leverage the knowledge from the source domain due to task discrepancy and domain shift. To bridge the gaps between different tasks and domains, we propose a Multi-Head Feature Adaptation module, which projects features in the source feature space to a new space that is more similar to the target space. Knowledge transfer is particularly important in Whole Slide Image (WSI) classification since the number of WSIs in one dataset might be too small to achieve satisfactory performance. Therefore, WSI classification is an ideal testbed for our method, and we adapt multiple knowledge transfer methods for WSI classification. The experimental results show that models with knowledge transfer outperform models that are trained from scratch by a large margin regardless of the number of WSIs in the datasets, and our method achieves state-of-the-art performances among other knowledge transfer methods on multiple datasets, including TCGA-RCC, TCGA-NSCLC, and Camelyon16 datasets.


Encoded Gradients Aggregation against Gradient Leakage in Federated Learning

arXiv.org Artificial Intelligence

Federated learning enables isolated clients to train a shared model collaboratively by aggregating the locally-computed gradient updates. However, privacy information could be leaked from uploaded gradients and be exposed to malicious attackers or an honest-but-curious server. Although the additive homomorphic encryption technique guarantees the security of this process, it brings unacceptable computation and communication burdens to FL participants. To mitigate this cost of secure aggregation and maintain the learning performance, we propose a new framework called Encoded Gradient Aggregation (\emph{EGA}). In detail, EGA first encodes local gradient updates into an encoded domain with injected noises in each client before the aggregation in the server. Then, the encoded gradients aggregation results can be recovered for the global model update via a decoding function. This scheme could prevent the raw gradients of a single client from exposing on the internet and keep them unknown to the server. EGA could provide optimization and communication benefits under different noise levels and defend against gradient leakage. We further provide a theoretical analysis of the approximation error and its impacts on federated optimization. Moreover, EGA is compatible with the most federated optimization algorithms. We conduct intensive experiments to evaluate EGA in real-world federated settings, and the results have demonstrated its efficacy.


A Survey of Trustworthy Federated Learning with Perspectives on Security, Robustness, and Privacy

arXiv.org Artificial Intelligence

Trustworthy artificial intelligence (AI) technology has revolutionized daily life and greatly benefited human society. Among various AI technologies, Federated Learning (FL) stands out as a promising solution for diverse real-world scenarios, ranging from risk evaluation systems in finance to cutting-edge technologies like drug discovery in life sciences. However, challenges around data isolation and privacy threaten the trustworthiness of FL systems. Adversarial attacks against data privacy, learning algorithm stability, and system confidentiality are particularly concerning in the context of distributed training in federated learning. Therefore, it is crucial to develop FL in a trustworthy manner, with a focus on security, robustness, and privacy. In this survey, we propose a comprehensive roadmap for developing trustworthy FL systems and summarize existing efforts from three key aspects: security, robustness, and privacy. We outline the threats that pose vulnerabilities to trustworthy federated learning across different stages of development, including data processing, model training, and deployment. To guide the selection of the most appropriate defense methods, we discuss specific technical solutions for realizing each aspect of Trustworthy FL (TFL). Our approach differs from previous work that primarily discusses TFL from a legal perspective or presents FL from a high-level, non-technical viewpoint.


Drug Synergistic Combinations Predictions via Large-Scale Pre-Training and Graph Structure Learning

arXiv.org Artificial Intelligence

Drug combination therapy is a well-established strategy for disease treatment with better effectiveness and less safety degradation. However, identifying novel drug combinations through wet-lab experiments is resource intensive due to the vast combinatorial search space. Recently, computational approaches, specifically deep learning models have emerged as an efficient way to discover synergistic combinations. While previous methods reported fair performance, their models usually do not take advantage of multi-modal data and they are unable to handle new drugs or cell lines. In this study, we collected data from various datasets covering various drug-related aspects. Then, we take advantage of large-scale pre-training models to generate informative representations and features for drugs, proteins, and diseases. Based on that, a message-passing graph is built on top to propagate information together with graph structure learning flexibility. This is first introduced in the biological networks and enables us to generate pseudo-relations in the graph. Our framework achieves state-of-the-art results in comparison with other deep learning-based methods on synergistic prediction benchmark datasets. We are also capable of inferencing new drug combination data in a test on an independent set released by AstraZeneca, where 10% of improvement over previous methods is observed. In addition, we're robust against unseen drugs and surpass almost 15% AU ROC compared to the second-best model. We believe our framework contributes to both the future wet-lab discovery of novel drugs and the building of promising guidance for precise combination medicine.


Spectral Feature Augmentation for Graph Contrastive Learning and Beyond

arXiv.org Artificial Intelligence

Although augmentations (e.g., perturbation of graph edges, image crops) boost the efficiency of Contrastive Learning (CL), feature level augmentation is another plausible, complementary yet not well researched strategy. Thus, we present a novel spectral feature argumentation for contrastive learning on graphs (and images). To this end, for each data view, we estimate a low-rank approximation per feature map and subtract that approximation from the map to obtain its complement. This is achieved by the proposed herein incomplete power iteration, a non-standard power iteration regime which enjoys two valuable byproducts (under mere one or two iterations): (i) it partially balances spectrum of the feature map, and (ii) it injects the noise into rebalanced singular values of the feature map (spectral augmentation). For two views, we align these rebalanced feature maps as such an improved alignment step can focus more on less dominant singular values of matrices of both views, whereas the spectral augmentation does not affect the spectral angle alignment (singular vectors are not perturbed). We derive the analytical form for: (i) the incomplete power iteration to capture its spectrum-balancing effect, and (ii) the variance of singular values augmented implicitly by the noise. We also show that the spectral augmentation improves the generalization bound. Experiments on graph/image datasets show that our spectral feature augmentation outperforms baselines, and is complementary with other augmentation strategies and compatible with various contrastive losses.


Graph Component Contrastive Learning for Concept Relatedness Estimation

arXiv.org Artificial Intelligence

Concept relatedness estimation (CRE) aims to determine whether two given concepts are related. Existing methods only consider the pairwise relationship between concepts, while overlooking the higher-order relationship that could be encoded in a concept-level graph structure. We discover that this underlying graph satisfies a set of intrinsic properties of CRE, including reflexivity, commutativity, and transitivity. In this paper, we formalize the CRE properties and introduce a graph structure named ConcreteGraph. To address the data scarcity issue in CRE, we introduce a novel data augmentation approach to sample new concept pairs from the graph. As it is intractable for data augmentation to fully capture the structural information of the ConcreteGraph due to a large amount of potential concept pairs, we further introduce a novel Graph Component Contrastive Learning framework to implicitly learn the complete structure of the ConcreteGraph. Empirical results on three datasets show significant improvement over the state-of-the-art model. Detailed ablation studies demonstrate that our proposed approach can effectively capture the high-order relationship among concepts.


Gradient Imitation Reinforcement Learning for General Low-Resource Information Extraction

arXiv.org Artificial Intelligence

Abstract--Information Extraction (IE) aims to extract structured information from heterogeneous sources. IE from natural language texts include sub-tasks such as Named Entity Recognition (NER), Relation Extraction (RE), and Event Extraction (EE). Most IE systems require comprehensive understandings of sentence structure, implied semantics, and domain knowledge to perform well; thus, IE tasks always need adequate external resources and annotations. However, it takes time and effort to obtain more human annotations. Low-Resource Information Extraction (LRIE) strives to use unsupervised data, reducing the required resources and human annotation. In practice, existing systems either utilize self-training schemes to generate pseudo labels that will cause the gradual drift problem, or leverage consistency regularization methods which inevitably possess confirmation bias. To alleviate confirmation bias due to the lack of feedback loops in existing LRIE learning paradigms, we develop a Gradient Imitation Reinforcement Learning (GIRL) method to encourage pseudo-labeled data to imitate the gradient descent direction on labeled data, which can force pseudo-labeled data to achieve better optimization capabilities similar to labeled data. Based on how well the pseudo-labeled data imitates the instructive gradient descent direction obtained from labeled data, we design a reward to quantify the imitation process and bootstrap the optimization capability of pseudo-labeled data through trial and error. In addition to learning paradigms, GIRL is not limited to specific sub-tasks, and we leverage GIRL to solve all IE sub-tasks (named entity recognition, relation extraction, and event extraction) in low-resource settings (semi-supervised IE and few-shot IE).


HICF: Hyperbolic Informative Collaborative Filtering

arXiv.org Artificial Intelligence

Considering the prevalence of the power-law distribution in user-item networks, hyperbolic space has attracted considerable attention and achieved impressive performance in the recommender system recently. The advantage of hyperbolic recommendation lies in that its exponentially increasing capacity is well-suited to describe the power-law distributed user-item network whereas the Euclidean equivalent is deficient. Nonetheless, it remains unclear which kinds of items can be effectively recommended by the hyperbolic model and which cannot. To address the above concerns, we take the most basic recommendation technique, collaborative filtering, as a medium, to investigate the behaviors of hyperbolic and Euclidean recommendation models. The results reveal that (1) tail items get more emphasis in hyperbolic space than that in Euclidean space, but there is still ample room for improvement; (2) head items receive modest attention in hyperbolic space, which could be considerably improved; (3) and nonetheless, the hyperbolic models show more competitive performance than Euclidean models. Driven by the above observations, we design a novel learning method, named hyperbolic informative collaborative filtering (HICF), aiming to compensate for the recommendation effectiveness of the head item while at the same time improving the performance of the tail item. The main idea is to adapt the hyperbolic margin ranking learning, making its pull and push procedure geometric-aware, and providing informative guidance for the learning of both head and tail items. Extensive experiments back up the analytic findings and also show the effectiveness of the proposed method. The work is valuable for personalized recommendations since it reveals that the hyperbolic space facilitates modeling the tail item, which often represents user-customized preferences or new products.


Graph-adaptive Rectified Linear Unit for Graph Neural Networks

arXiv.org Artificial Intelligence

Graph Neural Networks (GNNs) have achieved remarkable success by extending traditional convolution to learning on non-Euclidean data. The key to the GNNs is adopting the neural message-passing paradigm with two stages: aggregation and update. The current design of GNNs considers the topology information in the aggregation stage. However, in the updating stage, all nodes share the same updating function. The identical updating function treats each node embedding as i.i.d. random variables and thus ignores the implicit relationships between neighborhoods, which limits the capacity of the GNNs. The updating function is usually implemented with a linear transformation followed by a non-linear activation function. To make the updating function topology-aware, we inject the topological information into the non-linear activation function and propose Graph-adaptive Rectified Linear Unit (GReLU), which is a new parametric activation function incorporating the neighborhood information in a novel and efficient way. The parameters of GReLU are obtained from a hyperfunction based on both node features and the corresponding adjacent matrix. To reduce the risk of overfitting and the computational cost, we decompose the hyperfunction as two independent components for nodes and features respectively. We conduct comprehensive experiments to show that our plug-and-play GReLU method is efficient and effective given different GNN backbones and various downstream tasks.


Attentive Knowledge-aware Graph Convolutional Networks with Collaborative Guidance for Recommendation

arXiv.org Artificial Intelligence

To alleviate data sparsity and cold-start problems of traditional recommender systems (RSs), incorporating knowledge graphs (KGs) to supplement auxiliary information has attracted considerable attention recently. However, simply integrating KGs in current KG-based RS models is not necessarily a guarantee to improve the recommendation performance, which may even weaken the holistic model capability. This is because the construction of these KGs is independent of the collection of historical user-item interactions; hence, information in these KGs may not always be helpful for recommendation to all users. In this paper, we propose attentive Knowledge-aware Graph convolutional networks with Collaborative Guidance for personalized Recommendation (CG-KGR). CG-KGR is a novel knowledge-aware recommendation model that enables ample and coherent learning of KGs and user-item interactions, via our proposed Collaborative Guidance Mechanism. Specifically, CG-KGR first encapsulates historical interactions to interactive information summarization. Then CG-KGR utilizes it as guidance to extract information out of KGs, which eventually provides more precise personalized recommendation. We conduct extensive experiments on four real-world datasets over two recommendation tasks, i.e., Top-K recommendation and Click-Through rate (CTR) prediction. The experimental results show that the CG-KGR model significantly outperforms recent state-of-the-art models by 4.0-53.2% and 0.4-3.2%, in terms of Recall metric on Top-K recommendation and AUC on CTR prediction, respectively.