Goto

Collaborating Authors

 Kim, Suin


Knowledge Tracing in Programming Education Integrating Students' Questions

arXiv.org Artificial Intelligence

Knowledge tracing (KT) in programming education presents unique challenges due to the complexity of coding tasks and the diverse methods students use to solve problems. Although students' questions often contain valuable signals about their understanding and misconceptions, traditional KT models often neglect to incorporate these questions as inputs to address these challenges. This paper introduces SQKT (Students' Question-based Knowledge Tracing), a knowledge tracing model that leverages students' questions and automatically extracted skill information to enhance the accuracy of predicting students' performance on subsequent problems in programming education. Our method creates semantically rich embeddings that capture not only the surface-level content of the questions but also the student's mastery level and conceptual understanding. Experimental results demonstrate SQKT's superior performance in predicting student completion across various Python programming courses of differing difficulty levels. In in-domain experiments, SQKT achieved a 33.1\% absolute improvement in AUC compared to baseline models. The model also exhibited robust generalization capabilities in cross-domain settings, effectively addressing data scarcity issues in advanced programming courses. SQKT can be used to tailor educational content to individual learning needs and design adaptive learning systems in computer science education.


Generating Plausible Distractors for Multiple-Choice Questions via Student Choice Prediction

arXiv.org Artificial Intelligence

In designing multiple-choice questions (MCQs) in education, creating plausible distractors is crucial for identifying students' misconceptions and gaps in knowledge and accurately assessing their understanding. However, prior studies on distractor generation have not paid sufficient attention to enhancing the difficulty of distractors, resulting in reduced effectiveness of MCQs. This study presents a pipeline for training a model to generate distractors that are more likely to be selected by students. First, we train a pairwise ranker to reason about students' misconceptions and assess the relative plausibility of two distractors. Using this model, we create a dataset of pairwise distractor ranks and then train a distractor generator via Direct Preference Optimization (DPO) to generate more plausible distractors. Experiments on computer science subjects (Python, DB, MLDL) demonstrate that our pairwise ranker effectively identifies students' potential misunderstandings and achieves ranking accuracy comparable to human experts. Furthermore, our distractor generator outperforms several baselines in generating plausible distractors and produces questions with a higher item discrimination index (DI).


MultilingualWikipedia: Editors of Primary Language Contribute to More Complex Articles

AAAI Conferences

For many people who speak more than one language,their language proficiency for each of the languagesvaries. We can conjecture that people who use onelanguage (primary language) more than another wouldshow higher language proficiency in that primary language.It is, however, difficult to observe and quantifythat problem because natural language use is difficultto collect in large amounts. We identify Wikipedia asa great resource for studying multilingualism, and weconduct a quantitative analysis of the language complexityof primary and non-primary users of English,German, and Spanish. Our preliminary results indicatethat there are indeed consistent differences of languagecomplexity in the Wikipedia articles chosen by primaryand non-primary users, as well as differences in the editsby the two groups of users.


A Hierarchical Aspect-Sentiment Model for Online Reviews

AAAI Conferences

To help users quickly understand the major opinions from massive online reviews, it is important to automatically reveal the latent structure of the aspects, sentiment polarities, and the association between them. However, there is little work available to do this effectively. In this paper, we propose a hierarchical aspect sentiment model (HASM) to discover a hierarchical structure of aspect-based sentiments from unlabeled online reviews. In HASM, the whole structure is a tree. Each node itself is a two-level tree, whose root represents an aspect and the children represent the sentiment polarities associated with it. Each aspect or sentiment polarity is modeled as a distribution of words. To automatically extract both the structure and parameters of the tree, we use a Bayesian nonparametric model, recursive Chinese Restaurant Process (rCRP), as the prior and jointly infer the aspect-sentiment tree from the review texts. Experiments on two real datasets show that our model is comparable to two other hierarchical topic models in terms of quantitative measures of topic trees. It is also shown that our model achieves better sentence-level classification accuracy than previously proposed aspect-sentiment joint models.


Dirichlet Process with Mixed Random Measures: A Nonparametric Topic Model for Labeled Data

arXiv.org Machine Learning

We describe a nonparametric topic model for labeled data. The model uses a mixture of random measures (MRM) as a base distribution of the Dirichlet process (DP) of the HDP framework, so we call it the DP-MRM. To model labeled data, we define a DP distributed random measure for each label, and the resulting model generates an unbounded number of topics for each label. We apply DP-MRM on single-labeled and multi-labeled corpora of documents and compare the performance on label prediction with MedLDA, LDA-SVM, and Labeled-LDA. We further enhance the model by incorporating ddCRP and modeling multi-labeled images for image segmentation and object labeling, comparing the performance with nCuts and rddCRP.


Do You Feel What I Feel? Social Aspects of Emotions in Twitter Conversations

AAAI Conferences

We present a computational framework for understanding the social aspects of emotions in Twitter conversations. Using unannotated data and semisupervised machine learning, we look at emotional transitions, emotional influences among the conversation partners, and patterns in the overall emotional exchanges. We find that conversational partners usually express the same emotion, which we name Emotion accommodation, but when they do not, one of the conversational partners tends to respond with a positive emotion. We also show that tweets containing sympathy, apology, and complaint are significant emotion influencers. We verify the emotion classification part of our framework by a human-annotated corpus.