Goto

Collaborating Authors

 Kim, Seung Wook


Cosmos World Foundation Model Platform for Physical AI

arXiv.org Artificial Intelligence

Physical AI needs to be trained digitally first. It needs a digital twin of itself, the policy model, and a digital twin of the world, the world model. In this paper, we present the Cosmos World Foundation Model Platform to help developers build customized world models for their Physical AI setups. We position a world foundation model as a general-purpose world model that can be fine-tuned into customized world models for downstream applications. Our platform covers a video curation pipeline, pre-trained world foundation models, examples of post-training of pre-trained world foundation models, and video tokenizers. To help Physical AI builders solve the most critical problems of our society, we make our platform open-source and our models open-weight with permissive licenses available via https://github.com/NVIDIA/Cosmos.


DistillNeRF: Perceiving 3D Scenes from Single-Glance Images by Distilling Neural Fields and Foundation Model Features

arXiv.org Artificial Intelligence

We propose DistillNeRF, a self-supervised learning framework addressing the challenge of understanding 3D environments from limited 2D observations in autonomous driving. Our method is a generalizable feedforward model that predicts a rich neural scene representation from sparse, single-frame multi-view camera inputs, and is trained self-supervised with differentiable rendering to reconstruct RGB, depth, or feature images. Our first insight is to exploit per-scene optimized Neural Radiance Fields (NeRFs) by generating dense depth and virtual camera targets for training, thereby helping our model to learn 3D geometry from sparse non-overlapping image inputs. Second, to learn a semantically rich 3D representation, we propose distilling features from pre-trained 2D foundation models, such as CLIP or DINOv2, thereby enabling various downstream tasks without the need for costly 3D human annotations. To leverage these two insights, we introduce a novel model architecture with a two-stage lift-splat-shoot encoder and a parameterized sparse hierarchical voxel representation. Experimental results on the NuScenes dataset demonstrate that DistillNeRF significantly outperforms existing comparable self-supervised methods for scene reconstruction, novel view synthesis, and depth estimation; and it allows for competitive zero-shot 3D semantic occupancy prediction, as well as open-world scene understanding through distilled foundation model features. Demos and code will be available at https://distillnerf.github.io/.


L4GM: Large 4D Gaussian Reconstruction Model

arXiv.org Artificial Intelligence

We present L4GM, the first 4D Large Reconstruction Model that produces animated objects from a single-view video input - in a single feed-forward pass that takes only a second. Key to our success is a novel dataset of multiview videos containing curated, rendered animated objects from Objaverse. This dataset depicts 44K diverse objects with 110K animations rendered in 48 viewpoints, resulting in 12M videos with a total of 300M frames. We keep our L4GM simple for scalability and build directly on top of LGM [49], a pretrained 3D Large Reconstruction Model that outputs 3D Gaussian ellipsoids from multiview image input. L4GM outputs a per-frame 3D Gaussian Splatting representation from video frames sampled at a low fps and then upsamples the representation to a higher fps to achieve temporal smoothness. We add temporal self-attention layers to the base LGM to help it learn consistency across time, and utilize a per-timestep multiview rendering loss to train the model. The representation is upsampled to a higher framerate by training an interpolation model which produces intermediate 3D Gaussian representations. We showcase that L4GM that is only trained on synthetic data generalizes extremely well on in-the-wild videos, producing high quality animated 3D assets.


EmerDiff: Emerging Pixel-level Semantic Knowledge in Diffusion Models

arXiv.org Artificial Intelligence

Diffusion models have recently received increasing research attention for their remarkable transfer abilities in semantic segmentation tasks. However, generating fine-grained segmentation masks with diffusion models often requires additional training on annotated datasets, leaving it unclear to what extent pre-trained diffusion models alone understand the semantic relations of their generated images. To address this question, we leverage the semantic knowledge extracted from Stable Diffusion (SD) and aim to develop an image segmentor capable of generating fine-grained segmentation maps without any additional training. The primary difficulty stems from the fact that semantically meaningful feature maps typically exist only in the spatially lower-dimensional layers, which poses a challenge in directly extracting pixel-level semantic relations from these feature maps. To overcome this issue, our framework identifies semantic correspondences between image pixels and spatial locations of low-dimensional feature maps by exploiting SD's generation process and utilizes them for constructing image-resolution segmentation maps. In extensive experiments, the produced segmentation maps are demonstrated to be well delineated and capture detailed parts of the images, indicating the existence of highly accurate pixel-level semantic knowledge in diffusion models. Figure 1: EmerDiff is an unsupervised image segmentor solely built on the semantic knowledge extracted from a pre-trained diffusion model. The obtained fine-detailed segmentation maps suggest the presence of highly accurate pixel-level semantic knowledge in diffusion models. In recent years, diffusion models (Ho et al., 2020; Dhariwal & Nichol, 2021) have emerged as the state-of-the-art generative models for synthesizing high-quality images. Notably, the internal representations of pre-trained diffusion models have been found semantically enriched, demonstrating impressive transfer abilities in semantic segmentation tasks (Baranchuk et al., 2022; Karazija et al., 2023; Li et al., 2023a; Xu et al., 2023a).


Align Your Gaussians: Text-to-4D with Dynamic 3D Gaussians and Composed Diffusion Models

arXiv.org Artificial Intelligence

Text-guided diffusion models have revolutionized image and video generation and have also been successfully used for optimization-based 3D object synthesis. Here, we instead focus on the underexplored text-to-4D setting and synthesize dynamic, animated 3D objects using score distillation methods with an additional temporal dimension. Compared to previous work, we pursue a novel compositional generation-based approach, and combine text-to-image, text-to-video, and 3D-aware multiview diffusion models to provide feedback during 4D object optimization, thereby simultaneously enforcing temporal consistency, high-quality visual appearance and realistic geometry. Our method, called Align Your Gaussians (AYG), leverages dynamic 3D Gaussian Splatting with deformation fields as 4D representation. Crucial to AYG is a novel method to regularize the distribution of the moving 3D Gaussians and thereby stabilize the optimization and induce motion. We also propose a motion amplification mechanism as well as a new autoregressive synthesis scheme to generate and combine multiple 4D sequences for longer generation. These techniques allow us to synthesize vivid dynamic scenes, outperform previous work qualitatively and quantitatively and achieve state-of-the-art text-to-4D performance. Due to the Gaussian 4D representation, different 4D animations can be seamlessly combined, as we demonstrate. AYG opens up promising avenues for animation, simulation and digital content creation as well as synthetic data generation.


Align your Latents: High-Resolution Video Synthesis with Latent Diffusion Models

arXiv.org Artificial Intelligence

Latent Diffusion Models (LDMs) enable high-quality image synthesis while avoiding excessive compute demands by training a diffusion model in a compressed lower-dimensional latent space. Here, we apply the LDM paradigm to high-resolution video generation, a particularly resource-intensive task. We first pre-train an LDM on images only; then, we turn the image generator into a video generator by introducing a temporal dimension to the latent space diffusion model and fine-tuning on encoded image sequences, i.e., videos. Similarly, we temporally align diffusion model upsamplers, turning them into temporally consistent video super resolution models. We focus on two relevant real-world applications: Simulation of in-the-wild driving data and creative content creation with text-to-video modeling. In particular, we validate our Video LDM on real driving videos of resolution 512 x 1024, achieving state-of-the-art performance. Furthermore, our approach can easily leverage off-the-shelf pre-trained image LDMs, as we only need to train a temporal alignment model in that case. Doing so, we turn the publicly available, state-of-the-art text-to-image LDM Stable Diffusion into an efficient and expressive text-to-video model with resolution up to 1280 x 2048. We show that the temporal layers trained in this way generalize to different fine-tuned text-to-image LDMs. Utilizing this property, we show the first results for personalized text-to-video generation, opening exciting directions for future content creation. Project page: https://research.nvidia.com/labs/toronto-ai/VideoLDM/


DreamTeacher: Pretraining Image Backbones with Deep Generative Models

arXiv.org Artificial Intelligence

In this work, we introduce a self-supervised feature representation learning framework DreamTeacher that utilizes generative networks for pre-training downstream image backbones. We propose to distill knowledge from a trained generative model into standard image backbones that have been well engineered for specific perception tasks. We investigate two types of knowledge distillation: 1) distilling learned generative features onto target image backbones as an alternative to pretraining these backbones on large labeled datasets such as ImageNet, and 2) distilling labels obtained from generative networks with task heads onto logits of target backbones. We perform extensive analyses on multiple generative models, dense prediction benchmarks, and several pre-training regimes. We empirically find that our DreamTeacher significantly outperforms existing self-supervised representation learning approaches across the board. Unsupervised ImageNet pre-training with DreamTeacher leads to significant improvements over ImageNet classification pre-training on downstream datasets, showcasing generative models, and diffusion generative models specifically, as a promising approach to representation learning on large, diverse datasets without requiring manual annotation.


EditGAN: High-Precision Semantic Image Editing

arXiv.org Artificial Intelligence

Generative adversarial networks (GANs) have recently found applications in image editing. However, most GAN-based image editing methods often require large-scale datasets with semantic segmentation annotations for training, only provide high level control, or merely interpolate between different images. Here, we propose EditGAN, a novel method for high-quality, high-precision semantic image editing, allowing users to edit images by modifying their highly detailed part segmentation masks, e.g., drawing a new mask for the headlight of a car. EditGAN builds on a GAN framework that jointly models images and their semantic segmentations [1, 2], requiring only a handful of labeled examples - making it a scalable tool for editing. Specifically, we embed an image into the GAN's latent space and perform conditional latent code optimization according to the segmentation edit, which effectively also modifies the image. To amortize optimization, we find "editing vectors" in latent space that realize the edits. The framework allows us to learn an arbitrary number of editing vectors, which can then be directly applied on other images at interactive rates. We experimentally show that EditGAN can manipulate images with an unprecedented level of detail and freedom, while preserving full image quality.We can also easily combine multiple edits and perform plausible edits beyond EditGAN's training data. We demonstrate EditGAN on a wide variety of image types and quantitatively outperform several previous editing methods on standard editing benchmark tasks.