Kim, Minchul
Second FRCSyn-onGoing: Winning Solutions and Post-Challenge Analysis to Improve Face Recognition with Synthetic Data
DeAndres-Tame, Ivan, Tolosana, Ruben, Melzi, Pietro, Vera-Rodriguez, Ruben, Kim, Minchul, Rathgeb, Christian, Liu, Xiaoming, Gomez, Luis F., Morales, Aythami, Fierrez, Julian, Ortega-Garcia, Javier, Zhong, Zhizhou, Huang, Yuge, Mi, Yuxi, Ding, Shouhong, Zhou, Shuigeng, He, Shuai, Fu, Lingzhi, Cong, Heng, Zhang, Rongyu, Xiao, Zhihong, Smirnov, Evgeny, Pimenov, Anton, Grigorev, Aleksei, Timoshenko, Denis, Asfaw, Kaleb Mesfin, Low, Cheng Yaw, Liu, Hao, Wang, Chuyi, Zuo, Qing, He, Zhixiang, Shahreza, Hatef Otroshi, George, Anjith, Unnervik, Alexander, Rahimi, Parsa, Marcel, Sébastien, Neto, Pedro C., Huber, Marco, Kolf, Jan Niklas, Damer, Naser, Boutros, Fadi, Cardoso, Jaime S., Sequeira, Ana F., Atzori, Andrea, Fenu, Gianni, Marras, Mirko, Štruc, Vitomir, Yu, Jiang, Li, Zhangjie, Li, Jichun, Zhao, Weisong, Lei, Zhen, Zhu, Xiangyu, Zhang, Xiao-Yu, Biesseck, Bernardo, Vidal, Pedro, Coelho, Luiz, Granada, Roger, Menotti, David
Synthetic data is gaining increasing popularity for face recognition technologies, mainly due to the privacy concerns and challenges associated with obtaining real data, including diverse scenarios, quality, and demographic groups, among others. It also offers some advantages over real data, such as the large amount of data that can be generated or the ability to customize it to adapt to specific problem-solving needs. To effectively use such data, face recognition models should also be specifically designed to exploit synthetic data to its fullest potential. In order to promote the proposal of novel Generative AI methods and synthetic data, and investigate the application of synthetic data to better train face recognition systems, we introduce the 2nd FRCSyn-onGoing challenge, based on the 2nd Face Recognition Challenge in the Era of Synthetic Data (FRCSyn), originally launched at CVPR 2024. This is an ongoing challenge that provides researchers with an accessible platform to benchmark i) the proposal of novel Generative AI methods and synthetic data, and ii) novel face recognition systems that are specifically proposed to take advantage of synthetic data. We focus on exploring the use of synthetic data both individually and in combination with real data to solve current challenges in face recognition such as demographic bias, domain adaptation, and performance constraints in demanding situations, such as age disparities between training and testing, changes in the pose, or occlusions. Very interesting findings are obtained in this second edition, including a direct comparison with the first one, in which synthetic databases were restricted to DCFace and GANDiffFace.
Second Edition FRCSyn Challenge at CVPR 2024: Face Recognition Challenge in the Era of Synthetic Data
DeAndres-Tame, Ivan, Tolosana, Ruben, Melzi, Pietro, Vera-Rodriguez, Ruben, Kim, Minchul, Rathgeb, Christian, Liu, Xiaoming, Morales, Aythami, Fierrez, Julian, Ortega-Garcia, Javier, Zhong, Zhizhou, Huang, Yuge, Mi, Yuxi, Ding, Shouhong, Zhou, Shuigeng, He, Shuai, Fu, Lingzhi, Cong, Heng, Zhang, Rongyu, Xiao, Zhihong, Smirnov, Evgeny, Pimenov, Anton, Grigorev, Aleksei, Timoshenko, Denis, Asfaw, Kaleb Mesfin, Low, Cheng Yaw, Liu, Hao, Wang, Chuyi, Zuo, Qing, He, Zhixiang, Shahreza, Hatef Otroshi, George, Anjith, Unnervik, Alexander, Rahimi, Parsa, Marcel, Sébastien, Neto, Pedro C., Huber, Marco, Kolf, Jan Niklas, Damer, Naser, Boutros, Fadi, Cardoso, Jaime S., Sequeira, Ana F., Atzori, Andrea, Fenu, Gianni, Marras, Mirko, Štruc, Vitomir, Yu, Jiang, Li, Zhangjie, Li, Jichun, Zhao, Weisong, Lei, Zhen, Zhu, Xiangyu, Zhang, Xiao-Yu, Biesseck, Bernardo, Vidal, Pedro, Coelho, Luiz, Granada, Roger, Menotti, David
Synthetic data is gaining increasing relevance for training machine learning models. This is mainly motivated due to several factors such as the lack of real data and intra-class variability, time and errors produced in manual labeling, and in some cases privacy concerns, among others. This paper presents an overview of the 2nd edition of the Face Recognition Challenge in the Era of Synthetic Data (FRCSyn) organized at CVPR 2024. FRCSyn aims to investigate the use of synthetic data in face recognition to address current technological limitations, including data privacy concerns, demographic biases, generalization to novel scenarios, and performance constraints in challenging situations such as aging, pose variations, and occlusions. Unlike the 1st edition, in which synthetic data from DCFace and GANDiffFace methods was only allowed to train face recognition systems, in this 2nd edition we propose new sub-tasks that allow participants to explore novel face generative methods. The outcomes of the 2nd FRCSyn Challenge, along with the proposed experimental protocol and benchmarking contribute significantly to the application of synthetic data to face recognition.
Cluster and Aggregate: Face Recognition with Large Probe Set
Kim, Minchul, Liu, Feng, Jain, Anil, Liu, Xiaoming
Feature fusion plays a crucial role in unconstrained face recognition where inputs (probes or galleries) comprise of a set of N low quality images whose individual qualities vary. Advances in attention and recurrent modules have led to feature fusion that can model the relationship among the images in the input set. However, attention mechanisms cannot scale to large N due to their quadratic complexity and recurrent modules suffer from input order sensitivity. We propose a two-stage feature fusion paradigm, Cluster and Aggregate, that can both scale to large N and maintain the ability to perform sequential inference with order invariance. Specifically, Cluster stage is a linear assignment of N inputs to M global cluster centers, and Aggregation stage is a fusion over M clustered features. The clustered features play an integral role when the inputs are sequential as they can serve as a summarization of past features. By leveraging the order-invariance of incremental averaging operation, we design an update rule that achieves batch-order invariance, which guarantees that the contributions of early image in the sequence do not diminish as time steps increase. Experiments on IJB-B and IJB-S benchmark datasets show the superiority of the proposed two-stage paradigm in unconstrained face recognition. Code and pretrained models are available in Link.