Kim, Junyoung
FLARE: FP-Less PTQ and Low-ENOB ADC Based AMS-PiM for Error-Resilient, Fast, and Efficient Transformer Acceleration
Yi, Donghyeon, Lee, Seoyoung, Kim, Jongho, Kim, Junyoung, Ha, Sohmyung, Chang, Ik Joon, Je, Minkyu
Encoder-based transformers, powered by self-attention layers, have revolutionized machine learning with their context-aware representations. However, their quadratic growth in computational and memory demands presents significant bottlenecks. Analog-Mixed-Signal Process-in-Memory (AMS-PiM) architectures address these challenges by enabling efficient on-chip processing. Traditionally, AMS-PiM relies on Quantization-Aware Training (QAT), which is hardware-efficient but requires extensive retraining to adapt models to AMS-PiMs, making it increasingly impractical for transformer models. Post-Training Quantization (PTQ) mitigates this training overhead but introduces significant hardware inefficiencies. PTQ relies on dequantization-quantization (DQ-Q) processes, floating-point units (FPUs), and high-ENOB (Effective Number of Bits) analog-to-digital converters (ADCs). Particularly, High-ENOB ADCs scale exponentially in area and energy ($2^{ENOB}$), reduce sensing margins, and increase susceptibility to process, voltage, and temperature (PVT) variations, further compounding PTQ's challenges in AMS-PiM systems. To overcome these limitations, we propose RAP, an AMS-PiM architecture that eliminates DQ-Q processes, introduces FPU- and division-free nonlinear processing, and employs a low-ENOB-ADC-based sparse Matrix Vector multiplication technique. Using the proposed techniques, RAP improves error resiliency, area/energy efficiency, and computational speed while preserving numerical stability. Experimental results demonstrate that RAP outperforms state-of-the-art GPUs and conventional PiM architectures in energy efficiency, latency, and accuracy, making it a scalable solution for the efficient deployment of transformers.
Uncertainty-aware Semantic Mapping in Off-road Environments with Dempster-Shafer Theory of Evidence
Kim, Junyoung, Seo, Junwon
Semantic mapping with Bayesian Kernel Inference (BKI) has shown promise in providing a richer understanding of environments by effectively leveraging local spatial information. However, existing methods face challenges in constructing accurate semantic maps or reliable uncertainty maps in perceptually challenging environments due to unreliable semantic predictions. To address this issue, we propose an evidential semantic mapping framework, which integrates the evidential reasoning of Dempster-Shafer Theory of Evidence (DST) into the entire mapping pipeline by adopting Evidential Deep Learning (EDL) and Dempster's rule of combination. Additionally, the extended belief is devised to incorporate local spatial information based on their uncertainty during the mapping process. Comprehensive experiments across various off-road datasets demonstrate that our framework enhances the reliability of uncertainty maps, consistently outperforming existing methods in scenes with high perceptual uncertainties while showing semantic accuracy comparable to the best-performing semantic mapping techniques.
Evidential Semantic Mapping in Off-road Environments with Uncertainty-aware Bayesian Kernel Inference
Kim, Junyoung, Seo, Junwon, Min, Jihong
Robotic mapping with Bayesian Kernel Inference (BKI) has shown promise in creating semantic maps by effectively leveraging local spatial information. However, existing semantic mapping methods face challenges in constructing reliable maps in unstructured outdoor scenarios due to unreliable semantic predictions. To address this issue, we propose an evidential semantic mapping, which can enhance reliability in perceptually challenging off-road environments. We integrate Evidential Deep Learning into the semantic segmentation network to obtain the uncertainty estimate of semantic prediction. Subsequently, this semantic uncertainty is incorporated into an uncertainty-aware BKI, tailored to prioritize more confident semantic predictions when accumulating semantic information. By adaptively handling semantic uncertainties, the proposed framework constructs robust representations of the surroundings even in previously unseen environments. Comprehensive experiments across various off-road datasets demonstrate that our framework enhances accuracy and robustness, consistently outperforming existing methods in scenes with high perceptual uncertainties.
AMULET: Adaptive Matrix-Multiplication-Like Tasks
Kim, Junyoung, Ross, Kenneth, Sedlar, Eric, Stadler, Lukas
Many useful tasks in data science and machine learning applications can be written as simple variations of matrix multiplication. However, users have difficulty performing such tasks as existing matrix/vector libraries support only a limited class of computations hand-tuned for each unique hardware platform. Users can alternatively write the task as a simple nested loop but current compilers are not sophisticated enough to generate fast code for the task written in this way. To address these issues, we extend an open-source compiler to recognize and optimize these matrix multiplication-like tasks. Our framework, called Amulet, uses both database-style and compiler optimization techniques to generate fast code tailored to its execution environment. We show through experiments that Amulet achieves speedups on a variety of matrix multiplication-like tasks compared to existing compilers. For large matrices Amulet typically performs within 15% of hand-tuned matrix multiplication libraries, while handling a much broader class of computations.
Differentiated Backprojection Domain Deep Learning for Conebeam Artifact Removal
Han, Yoseob, Kim, Junyoung, Ye, Jong Chul
Conebeam CT using a circular trajectory is quite often used for various applications due to its relative simple geometry. For conebeam geometry, Feldkamp, Davis and Kress algorithm is regarded as the standard reconstruction method, but this algorithm suffers from so-called conebeam artifacts as the cone angle increases. Various model-based iterative reconstruction methods have been developed to reduce the cone-beam artifacts, but these algorithms usually require multiple applications of computational expensive forward and backprojections. In this paper, we develop a novel deep learning approach for accurate conebeam artifact removal. In particular, our deep network, designed on the differentiated backprojection domain, performs a data-driven inversion of an ill-posed deconvolution problem associated with the Hilbert transform. The reconstruction results along the coronal and sagittal directions are then combined using a spectral blending technique to minimize the spectral leakage. Experimental results show that our method outperforms the existing iterative methods despite significantly reduced runtime complexity.
CollaGAN : Collaborative GAN for Missing Image Data Imputation
Lee, Dongwook, Kim, Junyoung, Moon, Won-Jin, Ye, Jong Chul
In many applications requiring multiple inputs to obtain a desired output, if any of the input data is missing, it often introduces large amounts of bias. Although many techniques have been developed for imputing missing data, the image imputation is still difficult due to complicated nature of natural images. To address this problem, here we proposed a novel framework for missing image data imputation, called Collaborative Generative Adversarial Network (CollaGAN). CollaGAN converts an image imputation problem to a multi-domain images-to-image translation task so that a single generator and discriminator network can successfully estimate the missing data using the remaining clean data set. We demonstrate that CollaGAN produces the images with a higher visual quality compared to the existing competing approaches in various image imputation tasks.