Goto

Collaborating Authors

 Kim, Junsu


LoRA Training Provably Converges to a Low-Rank Global Minimum or It Fails Loudly (But it Probably Won't Fail)

arXiv.org Artificial Intelligence

Low-rank adaptation (LoRA) has become a standard approach for fine-tuning large foundation models. However, our theoretical understanding of LoRA remains limited as prior analyses of LoRA's training dynamics either rely on linearization arguments or consider highly simplified setups. In this work, we analyze the LoRA loss landscape without such restrictive assumptions. We define two regimes: a ``special regime'', which includes idealized setups where linearization arguments hold, and a ``generic regime'' representing more realistic setups where linearization arguments do not hold. In the generic regime, we show that LoRA training converges to a global minimizer with low rank and small magnitude, or a qualitatively distinct solution with high rank and large magnitude. Finally, we argue that the zero-initialization and weight decay in LoRA training induce an implicit bias toward the low-rank, small-magnitude region of the parameter space -- where global minima lie -- thus shedding light on why LoRA training usually succeeds in finding global minima.


Visual Representation Learning with Stochastic Frame Prediction

arXiv.org Artificial Intelligence

Self-supervised learning of image representations by predicting future frames is a promising direction but still remains a challenge. This is because of the under-determined nature of frame prediction; multiple potential futures can arise from a single current frame. To tackle this challenge, in this paper, we revisit the idea of stochastic video generation that learns to capture uncertainty in frame prediction and explore its effectiveness for representation learning. Specifically, we design a framework that trains a stochastic frame prediction model to learn temporal information between frames. Moreover, to learn dense information within each frame, we introduce an auxiliary masked image modeling objective along with a shared decoder architecture. We find this architecture allows for combining both objectives in a synergistic and compute-efficient manner. We demonstrate the effectiveness of our framework on a variety of tasks from video label propagation and vision-based robot learning domains, such as video segmentation, pose tracking, vision-based robotic locomotion, and manipulation tasks. Code is available on the project webpage: https://sites.google.com/view/2024rsp.


Multi-View Masked World Models for Visual Robotic Manipulation

arXiv.org Artificial Intelligence

Visual robotic manipulation research and applications often use multiple cameras, or views, to better perceive the world. How else can we utilize the richness of multi-view data? In this paper, we investigate how to learn good representations with multi-view data and utilize them for visual robotic manipulation. Specifically, we train a multi-view masked autoencoder which reconstructs pixels of randomly masked viewpoints and then learn a world model operating on the representations from the autoencoder. We demonstrate the effectiveness of our method in a range of scenarios, including multi-view control and single-view control with auxiliary cameras for representation learning. We also show that the multi-view masked autoencoder trained with multiple randomized viewpoints enables training a policy with strong viewpoint randomization and transferring the policy to solve real-robot tasks without camera calibration and an adaptation procedure. Video demonstrations are available at: https://sites.google.com/view/mv-mwm.


Imitating Graph-Based Planning with Goal-Conditioned Policies

arXiv.org Artificial Intelligence

Recently, graph-based planning algorithms have gained much attention to solve goal-conditioned reinforcement learning (RL) tasks: they provide a sequence of subgoals to reach the target-goal, and the agents learn to execute subgoal-conditioned policies. However, the sample-efficiency of such RL schemes still remains a challenge, particularly for long-horizon tasks. To address this issue, we present a simple yet effective self-imitation scheme which distills a subgoal-conditioned policy into the target-goal-conditioned policy. Our intuition here is that to reach a target-goal, an agent should pass through a subgoal, so target-goal- and subgoal- conditioned policies should be similar to each other. We also propose a novel scheme of stochastically skipping executed subgoals in a planned path, which further improves performance. Unlike prior methods that only utilize graph-based planning in an execution phase, our method transfers knowledge from a planner along with a graph into policy learning. We empirically show that our method can significantly boost the sample-efficiency of the existing goal-conditioned RL methods under various long-horizon control tasks.


Guiding Deep Molecular Optimization with Genetic Exploration

arXiv.org Machine Learning

De novo molecular design attempts to search over the chemical space for molecules with the desired property. Recently, deep learning has gained considerable attention as a promising approach to solve the problem. In this paper, we propose genetic expert-guided learning (GEGL), a simple yet novel framework for training a deep neural network (DNN) to generate highly-rewarding molecules. Our main idea is to design a "genetic expert improvement" procedure, which generates high-quality targets for imitation learning of the DNN. Extensive experiments show that GEGL significantly improves over state-of-the-art methods. For example, GEGL manages to solve the penalized octanol-water partition coefficient optimization with a score of 31.40, while the best-known score in the literature is 27.22. Besides, for the GuacaMol benchmark with 20 tasks, our method achieves the highest score for 19 tasks, in comparison with state-of-the-art methods, and newly obtains the perfect score for three tasks. Our training code is available at https://github.com/