Kim, Hyunjae
Can OpenAI o1 Reason Well in Ophthalmology? A 6,990-Question Head-to-Head Evaluation Study
Srinivasan, Sahana, Ai, Xuguang, Zou, Minjie, Zou, Ke, Kim, Hyunjae, Lo, Thaddaeus Wai Soon, Pushpanathan, Krithi, Kong, Yiming, Li, Anran, Singer, Maxwell, Jin, Kai, Antaki, Fares, Chen, David Ziyou, Liu, Dianbo, Adelman, Ron A., Chen, Qingyu, Tham, Yih Chung
Question: What is the performance and reasoning ability of OpenAI o1 compared to other large language models in addressing ophthalmology-specific questions? Findings: This study evaluated OpenAI o1 and five LLMs using 6,990 ophthalmological questions from MedMCQA. O1 achieved the highest accuracy (0.88) and macro-F1 score but ranked third in reasoning capabilities based on text-generation metrics. Across subtopics, o1 ranked first in ``Lens'' and ``Glaucoma'' but second to GPT-4o in ``Corneal and External Diseases'', ``Vitreous and Retina'' and ``Oculoplastic and Orbital Diseases''. Subgroup analyses showed o1 performed better on queries with longer ground truth explanations. Meaning: O1's reasoning enhancements may not fully extend to ophthalmology, underscoring the need for domain-specific refinements to optimize performance in specialized fields like ophthalmology.
Rationale-Guided Retrieval Augmented Generation for Medical Question Answering
Sohn, Jiwoong, Park, Yein, Yoon, Chanwoong, Park, Sihyeon, Hwang, Hyeon, Sung, Mujeen, Kim, Hyunjae, Kang, Jaewoo
Large language models (LLM) hold significant potential for applications in biomedicine, but they struggle with hallucinations and outdated knowledge. While retrieval-augmented generation (RAG) is generally employed to address these issues, it also has its own set of challenges: (1) LLMs are vulnerable to irrelevant or incorrect context, (2) medical queries are often not well-targeted for helpful information, and (3) retrievers are prone to bias toward the specific source corpus they were trained on. In this study, we present RAG$^2$ (RAtionale-Guided RAG), a new framework for enhancing the reliability of RAG in biomedical contexts. RAG$^2$ incorporates three key innovations: a small filtering model trained on perplexity-based labels of rationales, which selectively augments informative snippets of documents while filtering out distractors; LLM-generated rationales as queries to improve the utility of retrieved snippets; a structure designed to retrieve snippets evenly from a comprehensive set of four biomedical corpora, effectively mitigating retriever bias. Our experiments demonstrate that RAG$^2$ improves the state-of-the-art LLMs of varying sizes, with improvements of up to 6.1\%, and it outperforms the previous best medical RAG model by up to 5.6\% across three medical question-answering benchmarks. Our code is available at https://github.com/dmis-lab/RAG2.
ETHIC: Evaluating Large Language Models on Long-Context Tasks with High Information Coverage
Lee, Taewhoo, Yoon, Chanwoong, Jang, Kyochul, Lee, Donghyeon, Song, Minju, Kim, Hyunjae, Kang, Jaewoo
Recent advancements in large language models (LLM) capable of processing extremely long texts highlight the need for a dedicated evaluation benchmark to assess their long-context capabilities. However, existing methods, like the needle-in-a-haystack test, do not effectively assess whether these models fully utilize contextual information, raising concerns about the reliability of current evaluation techniques. To thoroughly examine the effectiveness of existing benchmarks, we introduce a new metric called information coverage (IC), which quantifies the proportion of the input context necessary for answering queries. Our findings indicate that current benchmarks exhibit low IC; although the input context may be extensive, the actual usable context is often limited. To address this, we present ETHIC, a novel benchmark designed to assess LLMs' ability to leverage the entire context. Our benchmark comprises 2,648 test instances spanning four long-context tasks with high IC scores in the domains of books, debates, medicine, and law. Our evaluations reveal significant performance drops in contemporary LLMs, highlighting a critical challenge in managing long contexts. Our benchmark is available at https://github.com/dmis-lab/ETHIC.
Language Enhanced Model for Eye (LEME): An Open-Source Ophthalmology-Specific Large Language Model
Gilson, Aidan, Ai, Xuguang, Xie, Qianqian, Srinivasan, Sahana, Pushpanathan, Krithi, Singer, Maxwell B., Huang, Jimin, Kim, Hyunjae, Long, Erping, Wan, Peixing, Del Priore, Luciano V., Ohno-Machado, Lucila, Xu, Hua, Liu, Dianbo, Adelman, Ron A., Tham, Yih-Chung, Chen, Qingyu
Large Language Models (LLMs) are poised to revolutionize healthcare. Ophthalmology-specific LLMs remain scarce and underexplored. We introduced an open-source, specialized LLM for ophthalmology, termed Language Enhanced Model for Eye (LEME). LEME was initially pre-trained on the Llama2 70B framework and further fine-tuned with a corpus of ~127,000 non-copyrighted training instances curated from ophthalmology-specific case reports, abstracts, and open-source study materials. We benchmarked LEME against eight other LLMs, namely, GPT-3.5, GPT-4, three Llama2 models (7B, 13B, 70B), PMC-LLAMA 13B, Meditron 70B, and EYE-Llama (another ophthalmology-specific LLM). Evaluations included four internal validation tasks: abstract completion, fill-in-the-blank, multiple-choice questions (MCQ), and short-answer QA. External validation tasks encompassed long-form QA, MCQ, patient EHR summarization, and clinical QA. Evaluation metrics included Rouge-L scores, accuracy, and expert evaluation of correctness, completeness, and readability. In internal validations, LEME consistently outperformed its counterparts, achieving Rouge-L scores of 0.20 in abstract completion (all p<0.05), 0.82 in fill-in-the-blank (all p<0.0001), and 0.22 in short-answer QA (all p<0.0001, except versus GPT-4). In external validations, LEME excelled in long-form QA with a Rouge-L of 0.19 (all p<0.0001), ranked second in MCQ accuracy (0.68; all p<0.0001), and scored highest in EHR summarization and clinical QA (ranging from 4.24 to 4.83 out of 5 for correctness, completeness, and readability). LEME's emphasis on robust fine-tuning and the use of non-copyrighted data represents a breakthrough in open-source ophthalmology-specific LLMs, offering the potential to revolutionize execution of clinical tasks while democratizing research collaboration.
Small Language Models Learn Enhanced Reasoning Skills from Medical Textbooks
Kim, Hyunjae, Hwang, Hyeon, Lee, Jiwoo, Park, Sihyeon, Kim, Dain, Lee, Taewhoo, Yoon, Chanwoong, Sohn, Jiwoong, Choi, Donghee, Kang, Jaewoo
While recent advancements in commercial large language models (LM) have shown promising results in medical tasks, their closed-source nature poses significant privacy and security concerns, hindering their widespread use in the medical field. Despite efforts to create open-source models, their limited parameters often result in insufficient multi-step reasoning capabilities required for solving complex medical problems. To address this, we introduce Meerkat, a new family of medical AI systems ranging from 7 to 70 billion parameters. The models were trained using our new synthetic dataset consisting of high-quality chain-of-thought reasoning paths sourced from 18 medical textbooks, along with diverse instruction-following datasets. Our systems achieved remarkable accuracy across six medical benchmarks, surpassing the previous best models such as MediTron and BioMistral, and GPT-3.5 by a large margin. Notably, Meerkat-7B surpassed the passing threshold of the United States Medical Licensing Examination (USMLE) for the first time for a 7B-parameter model, while Meerkat-70B outperformed GPT-4 by an average of 1.3%. Additionally, Meerkat-70B correctly diagnosed 21 out of 38 complex clinical cases, outperforming humans' 13.8 and closely matching GPT-4's 21.8. Our systems offered more detailed free-form responses to clinical queries compared to existing small models, approaching the performance level of large commercial models. This significantly narrows the performance gap with large LMs, showcasing its effectiveness in addressing complex medical challenges.
Augmenting Biomedical Named Entity Recognition with General-domain Resources
Yin, Yu, Kim, Hyunjae, Xiao, Xiao, Wei, Chih Hsuan, Kang, Jaewoo, Lu, Zhiyong, Xu, Hua, Fang, Meng, Chen, Qingyu
Training a neural network-based biomedical named entity recognition (BioNER) model usually requires extensive and costly human annotations. While several studies have employed multi-task learning with multiple BioNER datasets to reduce human effort, this approach does not consistently yield performance improvements and may introduce label ambiguity in different biomedical corpora. We aim to tackle those challenges through transfer learning from easily accessible resources with fewer concept overlaps with biomedical datasets. In this paper, we proposed GERBERA, a simple-yet-effective method that utilized a general-domain NER dataset for training. Specifically, we performed multi-task learning to train a pre-trained biomedical language model with both the target BioNER dataset and the general-domain dataset. Subsequently, we fine-tuned the models specifically for the BioNER dataset. We systematically evaluated GERBERA on five datasets of eight entity types, collectively consisting of 81,410 instances. Despite using fewer biomedical resources, our models demonstrated superior performance compared to baseline models trained with multiple additional BioNER datasets. Specifically, our models consistently outperformed the baselines in six out of eight entity types, achieving an average improvement of 0.9% over the best baseline performance across eight biomedical entity types sourced from five different corpora. Our method was especially effective in amplifying performance on BioNER datasets characterized by limited data, with a 4.7% improvement in F1 scores on the JNLPBA-RNA dataset.
CookingSense: A Culinary Knowledgebase with Multidisciplinary Assertions
Choi, Donghee, Gim, Mogan, Park, Donghyeon, Sung, Mujeen, Kim, Hyunjae, Kang, Jaewoo, Choi, Jihun
This paper introduces CookingSense, a descriptive collection of knowledge assertions in the culinary domain extracted from various sources, including web data, scientific papers, and recipes, from which knowledge covering a broad range of aspects is acquired. CookingSense is constructed through a series of dictionary-based filtering and language model-based semantic filtering techniques, which results in a rich knowledgebase of multidisciplinary food-related assertions. Additionally, we present FoodBench, a novel benchmark to evaluate culinary decision support systems. From evaluations with FoodBench, we empirically prove that CookingSense improves the performance of retrieval augmented language models.
KU-DMIS-MSRA at RadSum23: Pre-trained Vision-Language Model for Radiology Report Summarization
Kim, Gangwoo, Kim, Hajung, Ji, Lei, Bae, Seongsu, Kim, Chanhwi, Sung, Mujeen, Kim, Hyunjae, Yan, Kun, Chang, Eric, Kang, Jaewoo
In this paper, we introduce CheXOFA, a new pre-trained vision-language model (VLM) for the chest X-ray domain. Our model is initially pre-trained on various multimodal datasets within the general domain before being transferred to the chest X-ray domain. Following a prominent VLM, we unify various domain-specific tasks into a simple sequence-to-sequence schema. It enables the model to effectively learn the required knowledge and skills from limited resources in the domain. Demonstrating superior performance on the benchmark datasets provided by the BioNLP shared task, our model benefits from its training across multiple tasks and domains. With subtle techniques including ensemble and factual calibration, our system achieves first place on the RadSum23 leaderboard for the hidden test set.
Automatic Creation of Named Entity Recognition Datasets by Querying Phrase Representations
Kim, Hyunjae, Yoo, Jaehyo, Yoon, Seunghyun, Kang, Jaewoo
Most weakly supervised named entity recognition (NER) models rely on domain-specific dictionaries provided by experts. This approach is infeasible in many domains where dictionaries do not exist. While a phrase retrieval model was used to construct pseudo-dictionaries with entities retrieved from Wikipedia automatically in a recent study, these dictionaries often have limited coverage because the retriever is likely to retrieve popular entities rather than rare ones. In this study, we present a novel framework, HighGEN, that generates NER datasets with high-coverage pseudo-dictionaries. Specifically, we create entity-rich dictionaries with a novel search method, called phrase embedding search, which encourages the retriever to search a space densely populated with various entities. In addition, we use a new verification process based on the embedding distance between candidate entity mentions and entity types to reduce the false-positive noise in weak labels generated by high-coverage dictionaries. We demonstrate that HighGEN outperforms the previous best model by an average F1 score of 4.7 across five NER benchmark datasets.
LIQUID: A Framework for List Question Answering Dataset Generation
Lee, Seongyun, Kim, Hyunjae, Kang, Jaewoo
Question answering (QA) models often rely on large-scale training datasets, which necessitates the development of a data generation framework to reduce the cost of manual annotations. Although several recent studies have aimed to generate synthetic questions with single-span answers, no study has been conducted on the creation of list questions with multiple, non-contiguous spans as answers. To address this gap, we propose LIQUID, an automated framework for generating list QA datasets from unlabeled corpora. We first convert a passage from Wikipedia or PubMed into a summary and extract named entities from the summarized text as candidate answers. This allows us to select answers that are semantically correlated in context and is, therefore, suitable for constructing list questions. We then create questions using an off-the-shelf question generator with the extracted entities and original passage. Finally, iterative filtering and answer expansion are performed to ensure the accuracy and completeness of the answers. Using our synthetic data, we significantly improve the performance of the previous best list QA models by exact-match F1 scores of 5.0 on MultiSpanQA, 1.9 on Quoref, and 2.8 averaged across three BioASQ benchmarks.