Goto

Collaborating Authors

 Kim, Hyowon


Accurate Scene Text Recognition with Efficient Model Scaling and Cloze Self-Distillation

arXiv.org Artificial Intelligence

Scaling architectures have been proven effective for improving Scene Text Recognition (STR), but the individual contribution of vision encoder and text decoder scaling remain under-explored. In this work, we present an in-depth empirical analysis and demonstrate that, contrary to previous observations, scaling the decoder yields significant performance gains, always exceeding those achieved by encoder scaling alone. We also identify label noise as a key challenge in STR, particularly in real-world data, which can limit the effectiveness of STR models. To address this, we propose Cloze Self-Distillation (CSD), a method that mitigates label noise by distilling a student model from context-aware soft predictions and pseudolabels generated by a teacher model. Additionally, we enhance the decoder architecture by introducing differential cross-attention for STR. Our methodology achieves state-of-the-art performance on 10 out of 11 benchmarks using only real data, while significantly reducing the parameter size and computational costs.


Set-Type Belief Propagation with Applications to Poisson Multi-Bernoulli SLAM

arXiv.org Artificial Intelligence

Belief propagation (BP) is a useful probabilistic inference algorithm for efficiently computing approximate marginal probability densities of random variables. However, in its standard form, BP is only applicable to the vector-type random variables with a fixed and known number of vector elements, while certain applications rely on RFSs with an unknown number of vector elements. In this paper, we develop BP rules for factor graphs defined on sequences of RFSs where each RFS has an unknown number of elements, with the intention of deriving novel inference methods for RFSs. Furthermore, we show that vector-type BP is a special case of set-type BP, where each RFS follows the Bernoulli process. To demonstrate the validity of developed set-type BP, we apply it to the PMB filter for SLAM, which naturally leads to new set-type BP-mapping, SLAM, multi-target tracking, and simultaneous localization and tracking filters. Finally, we explore the relationships between the vector-type BP and the proposed set-type BP PMB-SLAM implementations and show a performance gain of the proposed set-type BP PMB-SLAM filter in comparison with the vector-type BP-SLAM filter.