Kim, Heasung
Importance Sampling via Score-based Generative Models
Kim, Heasung, Lee, Taekyun, Kim, Hyeji, de Veciana, Gustavo
Importance sampling, which involves sampling from a probability density function (PDF) proportional to the product of an importance weight function and a base PDF, is a powerful technique with applications in variance reduction, biased or customized sampling, data augmentation, and beyond. Inspired by the growing availability of score-based generative models (SGMs), we propose an entirely training-free Importance sampling framework that relies solely on an SGM for the base PDF. Our key innovation is realizing the importance sampling process as a backward diffusion process, expressed in terms of the score function of the base PDF and the specified importance weight function--both readily available--eliminating the need for any additional training. We conduct a thorough analysis demonstrating the method's scalability and effectiveness across diverse datasets and tasks, including importance sampling for industrial and natural images with neural importance weight functions. The training-free aspect of our method is particularly compelling in real-world scenarios where a single base distribution underlies multiple biased sampling tasks, each requiring a different importance weight function. To the best of our knowledge our approach is the first importance sampling framework to achieve this.
Generative Diffusion Model-based Compression of MIMO CSI
Kim, Heasung, Lee, Taekyun, Kim, Hyeji, De Veciana, Gustavo, Arfaoui, Mohamed Amine, Koc, Asil, Pietraski, Phil, Zhang, Guodong, Kaewell, John
While neural lossy compression techniques have markedly advanced the efficiency of Channel State Information (CSI) compression and reconstruction for feedback in MIMO communications, efficient algorithms for more challenging and practical tasks-such as CSI compression for future channel prediction and reconstruction with relevant side information-remain underexplored, often resulting in suboptimal performance when existing methods are extended to these scenarios. To that end, we propose a novel framework for compression with side information, featuring an encoding process with fixed-rate compression using a trainable codebook for codeword quantization, and a decoding procedure modeled as a backward diffusion process conditioned on both the codeword and the side information. Experimental results show that our method significantly outperforms existing CSI compression algorithms, often yielding over twofold performance improvement by achieving comparable distortion at less than half the data rate of competing methods in certain scenarios. These findings underscore the potential of diffusion-based compression for practical deployment in communication systems.
Learning RL-Policies for Joint Beamforming Without Exploration: A Batch Constrained Off-Policy Approach
Kim, Heasung, Ankireddy, Sravan Kumar
In this work, we consider the problem of network parameter optimization for rate maximization. We frame this as a joint optimization problem of power control, beam forming, and interference cancellation. We consider the setting where multiple Base Stations (BSs) communicate with multiple user equipment (UEs). Because of the exponential computational complexity of brute force search, we instead solve this nonconvex optimization problem using deep reinforcement learning (RL) techniques. Modern communication systems are notorious for their difficulty in exactly modeling their behavior. This limits us in using RL-based algorithms as interaction with the environment is needed for the agent to explore and learn efficiently. Further, it is ill-advised to deploy the algorithm in the real world for exploration and learning because of the high cost of failure. In contrast to the previous RL-based solutions proposed, such as deep-Q network (DQN) based control, we suggest an offline model-based approach. We specifically consider discrete batch-constrained deep Q-learning (BCQ) and show that performance similar to DQN can be achieved with only a fraction of the data without exploring. This maximizes sample efficiency and minimizes risk in deploying a new algorithm to commercial networks. We provide the entire project resource, including code and data, at the following link: https://github.com/Heasung-Kim/ safe-rl-deployment-for-5g.