Kim, Eunki
Sightation Counts: Leveraging Sighted User Feedback in Building a BLV-aligned Dataset of Diagram Descriptions
Kang, Wan Ju, Kim, Eunki, An, Na Min, Kim, Sangryul, Choi, Haemin, Kwak, Ki Hoon, Thorne, James
Often, the needs and visual abilities differ between the annotator group and the end user group. Generating detailed diagram descriptions for blind and low-vision (BLV) users is one such challenging domain. Sighted annotators could describe visuals with ease, but existing studies have shown that direct generations by them are costly, bias-prone, and somewhat lacking by BLV standards. In this study, we ask sighted individuals to assess -- rather than produce -- diagram descriptions generated by vision-language models (VLM) that have been guided with latent supervision via a multi-pass inference. The sighted assessments prove effective and useful to professional educators who are themselves BLV and teach visually impaired learners. We release Sightation, a collection of diagram description datasets spanning 5k diagrams and 137k samples for completion, preference, retrieval, question answering, and reasoning training purposes and demonstrate their fine-tuning potential in various downstream tasks.
Can LVLMs and Automatic Metrics Capture Underlying Preferences of Blind and Low-Vision Individuals for Navigational Aid?
An, Na Min, Kim, Eunki, Kang, Wan Ju, Kim, Sangryul, Shim, Hyunjung, Thorne, James
Vision is a primary means of how humans perceive the environment, but Blind and Low-Vision (BLV) people need assistance understanding their surroundings, especially in unfamiliar environments. The emergence of semantic-based systems as assistance tools for BLV users has motivated many researchers to explore responses from Large Vision-Language Models (LVLMs). However, it has yet been studied preferences of BLV users on diverse types/styles of responses from LVLMs, specifically for navigational aid. To fill this gap, we first construct Eye4B dataset, consisting of human-validated 1.1k curated outdoor/indoor scenes with 5-10 relevant requests per scene. Then, we conduct an in-depth user study with eight BLV users to evaluate their preferences on six LVLMs from five perspectives: Afraidness, Nonactionability, Sufficiency, and Conciseness. Finally, we introduce Eye4B benchmark for evaluating alignment between widely used model-based image-text metrics and our collected BLV preferences. Our work can be set as a guideline for developing BLV-aware LVLMs towards a Barrier-Free AI system.
AlphaPO -- Reward shape matters for LLM alignment
Gupta, Aman, Tang, Shao, Song, Qingquan, Zhu, Sirou, Hong, Jiwoo, Saha, Ankan, Gupta, Viral, Lee, Noah, Kim, Eunki, Zhu, Jason, Pillai, Natesh, Keerthi, S. Sathiya
Reinforcement Learning with Human Feedback (RLHF) and its variants have made huge strides toward the effective alignment of large language models (LLMs) to follow instructions and reflect human values. More recently, Direct Alignment Algorithms (DAAs) have emerged in which the reward modeling stage of RLHF is skipped by characterizing the reward directly as a function of the policy being learned. Examples include Direct Preference Optimization (DPO) and Simple Preference Optimization (SimPO). These methods often suffer from likelihood displacement, a phenomenon by which the probabilities of preferred responses are often reduced undesirably. In this paper, we argue that, for DAAs the reward (function) shape matters. We introduce AlphaPO, a new DAA method that leverages an $\alpha$-parameter to help change the shape of the reward function beyond the standard log reward. AlphaPO helps maintain fine-grained control over likelihood displacement and over-optimization. Compared to SimPO, one of the best performing DAAs, AlphaPO leads to about 7\% to 10\% relative improvement in alignment performance for the instruct versions of Mistral-7B and Llama3-8B. The analysis and results presented highlight the importance of the reward shape, and how one can systematically change it to affect training dynamics, as well as improve alignment performance.
I0T: Embedding Standardization Method Towards Zero Modality Gap
An, Na Min, Kim, Eunki, Thorne, James, Shim, Hyunjung
Contrastive Language-Image Pretraining (CLIP) enables zero-shot inference in downstream tasks such as image-text retrieval and classification. However, recent works extending CLIP suffer from the issue of modality gap, which arises when the image and text embeddings are projected to disparate manifolds, deviating from the intended objective of image-text contrastive learning. We discover that this phenomenon is linked to the modality-specific characteristic that each image/text encoder independently possesses and propose two methods to address the modality gap: (1) a post-hoc embedding standardization method, $\text{I0T}_{\text{post}}$ that reduces the modality gap approximately to zero and (2) a trainable method, $\text{I0T}_{\text{async}}$, to alleviate the modality gap problem by adding two normalization layers for each encoder. Our I0T framework can significantly reduce the modality gap while preserving the original embedding representations of trained models with their locked parameters. In practice, $\text{I0T}_{\text{post}}$ can serve as an alternative explainable automatic evaluation metric of widely used CLIPScore (CLIP-S).