Kim, Eric
AttenGluco: Multimodal Transformer-Based Blood Glucose Forecasting on AI-READI Dataset
Farahmand, Ebrahim, Azghan, Reza Rahimi, Chatrudi, Nooshin Taheri, Kim, Eric, Gudur, Gautham Krishna, Thomaz, Edison, Pedrielli, Giulia, Turaga, Pavan, Ghasemzadeh, Hassan
Diabetes is a chronic metabolic disorder characterized by persistently high blood glucose levels (BGLs), leading to severe complications such as cardiovascular disease, neuropathy, and retinopathy. Predicting BGLs enables patients to maintain glucose levels within a safe range and allows caregivers to take proactive measures through lifestyle modifications. Continuous Glucose Monitoring (CGM) systems provide real-time tracking, offering a valuable tool for monitoring BGLs. However, accurately forecasting BGLs remains challenging due to fluctuations due to physical activity, diet, and other factors. Recent deep learning models show promise in improving BGL prediction. Nonetheless, forecasting BGLs accurately from multimodal, irregularly sampled data over long prediction horizons remains a challenging research problem. In this paper, we propose AttenGluco, a multimodal Transformer-based framework for long-term blood glucose prediction. AttenGluco employs cross-attention to effectively integrate CGM and activity data, addressing challenges in fusing data with different sampling rates. Moreover, it employs multi-scale attention to capture long-term dependencies in temporal data, enhancing forecasting accuracy. To evaluate the performance of AttenGluco, we conduct forecasting experiments on the recently released AIREADI dataset, analyzing its predictive accuracy across different subject cohorts including healthy individuals, people with prediabetes, and those with type 2 diabetes. Furthermore, we investigate its performance improvements and forgetting behavior as new cohorts are introduced. Our evaluations show that AttenGluco improves all error metrics, such as root mean square error (RMSE), mean absolute error (MAE), and correlation, compared to the multimodal LSTM model. AttenGluco outperforms this baseline model by about 10% and 15% in terms of RMSE and MAE, respectively.
Closer Look at Efficient Inference Methods: A Survey of Speculative Decoding
Ryu, Hyun, Kim, Eric
Efficient inference in large language models (LLMs) has become a critical focus as their scale and complexity grow. Traditional autoregressive decoding, while effective, suffers from computational inefficiencies due to its sequential token generation process. Speculative decoding addresses this bottleneck by introducing a two-stage framework: drafting and verification. A smaller, efficient model generates a preliminary draft, which is then refined by a larger, more sophisticated model. This paper provides a comprehensive survey of speculative decoding methods, categorizing them into draft-centric and model-centric approaches. We discuss key ideas associated with each method, highlighting their potential for scaling LLM inference. This survey aims to guide future research in optimizing speculative decoding and its integration into real-world LLM applications.
An efficient deep neural network to find small objects in large 3D images
Park, Jungkyu, Chลฤdowski, Jakub, Jastrzฤbski, Stanisลaw, Witowski, Jan, Xu, Yanqi, Du, Linda, Gaddam, Sushma, Kim, Eric, Lewin, Alana, Parikh, Ujas, Plaunova, Anastasia, Chen, Sardius, Millet, Alexandra, Park, James, Pysarenko, Kristine, Patel, Shalin, Goldberg, Julia, Wegener, Melanie, Moy, Linda, Heacock, Laura, Reig, Beatriu, Geras, Krzysztof J.
3D imaging enables accurate diagnosis by providing spatial information about organ anatomy. However, using 3D images to train AI models is computationally challenging because they consist of 10x or 100x more pixels than their 2D counterparts. To be trained with high-resolution 3D images, convolutional neural networks resort to downsampling them or projecting them to 2D. We propose an effective alternative, a neural network that enables efficient classification of full-resolution 3D medical images. Compared to off-the-shelf convolutional neural networks, our network, 3D Globally-Aware Multiple Instance Classifier (3D-GMIC), uses 77.98%-90.05% less GPU memory and 91.23%-96.02% less computation. While it is trained only with image-level labels, without segmentation labels, it explains its predictions by providing pixel-level saliency maps. On a dataset collected at NYU Langone Health, including 85,526 patients with full-field 2D mammography (FFDM), synthetic 2D mammography, and 3D mammography, 3D-GMIC achieves an AUC of 0.831 (95% CI: 0.769-0.887) in classifying breasts with malignant findings using 3D mammography. This is comparable to the performance of GMIC on FFDM (0.816, 95% CI: 0.737-0.878) and synthetic 2D (0.826, 95% CI: 0.754-0.884), which demonstrates that 3D-GMIC successfully classified large 3D images despite focusing computation on a smaller percentage of its input compared to GMIC. Therefore, 3D-GMIC identifies and utilizes extremely small regions of interest from 3D images consisting of hundreds of millions of pixels, dramatically reducing associated computational challenges. 3D-GMIC generalizes well to BCS-DBT, an external dataset from Duke University Hospital, achieving an AUC of 0.848 (95% CI: 0.798-0.896).
CausalX: Causal Explanations and Block Multilinear Factor Analysis
Vasilescu, M. Alex O., Kim, Eric, Zeng, Xiao S.
By adhering to the dictum, "No causation without manipulation (treatment, intervention)", cause and effect data analysis represents changes in observed data in terms of changes in the causal factors. When causal factors are not amenable for active manipulation in the real world due to current technological limitations or ethical considerations, a counterfactual approach performs an intervention on the model of data formation. In the case of object representation or activity (temporal object) representation, varying object parts is generally unfeasible whether they be spatial and/or temporal. Multilinear algebra, the algebra of higher-order tensors, is a suitable and transparent framework for disentangling the causal factors of data formation. Learning a part-based intrinsic causal factor representations in a multilinear framework requires applying a set of interventions on a part-based multilinear model. We propose a unified multilinear model of wholes and parts. We derive a hierarchical block multilinear factorization, the M-mode Block SVD, that computes a disentangled representation of the causal factors by optimizing simultaneously across the entire object hierarchy. Given computational efficiency considerations, we introduce an incremental bottom-up computational alternative, the Incremental M-mode Block SVD, that employs the lower-level abstractions, the part representations, to represent the higher level of abstractions, the parent wholes. This incremental computational approach may also be employed to update the causal model parameters when data becomes available incrementally. The resulting object representation is an interpretable combinatorial choice of intrinsic causal factor representations related to an object's recursive hierarchy of wholes and parts that renders object recognition robust to occlusion and reduces training data requirements.
Toward Transformer-Based Object Detection
Beal, Josh, Kim, Eric, Tzeng, Eric, Park, Dong Huk, Zhai, Andrew, Kislyuk, Dmitry
Transformers have become the dominant model in natural language processing, owing to their ability to pretrain on massive amounts of data, then transfer to smaller, more specific tasks via fine-tuning. The Vision Transformer was the first major attempt to apply a pure transformer model directly to images as input, demonstrating that as compared to convolutional networks, transformer-based architectures can achieve competitive results on benchmark classification tasks. However, the computational complexity of the attention operator means that we are limited to low-resolution inputs. For more complex tasks such as detection or segmentation, maintaining a high input resolution is crucial to ensure that models can properly identify and reflect fine details in their output. This naturally raises the question of whether or not transformer-based architectures such as the Vision Transformer are capable of performing tasks other than classification. In this paper, we determine that Vision Transformers can be used as a backbone by a common detection task head to produce competitive COCO results. The model that we propose, ViT-FRCNN, demonstrates several known properties associated with transformers, including large pretraining capacity and fast fine-tuning performance. We also investigate improvements over a standard detection backbone, including superior performance on out-of-domain images, better performance on large objects, and a lessened reliance on non-maximum suppression. We view ViT-FRCNN as an important stepping stone toward a pure-transformer solution of complex vision tasks such as object detection.
Deep Neural Networks Improve Radiologists' Performance in Breast Cancer Screening
Wu, Nan, Phang, Jason, Park, Jungkyu, Shen, Yiqiu, Huang, Zhe, Zorin, Masha, Jastrzฤbski, Stanisลaw, Fรฉvry, Thibault, Katsnelson, Joe, Kim, Eric, Wolfson, Stacey, Parikh, Ujas, Gaddam, Sushma, Lin, Leng Leng Young, Ho, Kara, Weinstein, Joshua D., Reig, Beatriu, Gao, Yiming, Toth, Hildegard, Pysarenko, Kristine, Lewin, Alana, Lee, Jiyon, Airola, Krystal, Mema, Eralda, Chung, Stephanie, Hwang, Esther, Samreen, Naziya, Kim, S. Gene, Heacock, Laura, Moy, Linda, Cho, Kyunghyun, Geras, Krzysztof J.
This paper makes several contributions. Among these, only 20-40% yield a diagnosis of cancer (5). The authors declare no conflict of interest. To whom correspondence should be addressed. Work done while visiting NYU. In the reader study, we compared the performance of our best model to that of radiologists and found our model to be as accurate as radiologists both in terms of area under ROC curve (AUC) and area under precision-recall curve (PRAUC). We also found that a hybrid model, taking the average of the probabilities of malignancy predicted by a radiologist and by our neural network, yields more accurate predictions than either of the two separately. This suggests that our network and radiologists learned different aspects of the task and that our model could be effective as a tool providing radiologists a second reader. With this contribution, research groups that are working on improving screening mammography, which may not have access to a large training dataset like ours, will be able to directly use our model in their research or to use our pretrained weights as an initialization to train models with less data. By making our models public, we invite other groups to validate our results and test their robustness to shifts in the data distribution. The dataset includes 229,426 digital screening mammography exams (1,001,093 images) from 141,473 patients. For each breast, we assign two binary labels: from biopsies. We have 5,832 exams with at least one biopsy the absence/presence of malignant findings in a breast, performed within 120 days of the screening mammogram. With Among these, biopsies confirmed malignant findings for 985 left and right breasts, each exam has a total of four binary (8.4%) breasts and benign findings for 5,556 (47.6%) breasts.
High-Resolution Breast Cancer Screening with Multi-View Deep Convolutional Neural Networks
Geras, Krzysztof J., Wolfson, Stacey, Shen, Yiqiu, Wu, Nan, Kim, S. Gene, Kim, Eric, Heacock, Laura, Parikh, Ujas, Moy, Linda, Cho, Kyunghyun
Advances in deep learning for natural images have prompted a surge of interest in applying similar techniques to medical images. The majority of the initial attempts focused on replacing the input of a deep convolutional neural network with a medical image, which does not take into consideration the fundamental differences between these two types of images. Specifically, fine details are necessary for detection in medical images, unlike in natural images where coarse structures matter most. This difference makes it inadequate to use the existing network architectures developed for natural images, because they work on heavily downscaled images to reduce the memory requirements. This hides details necessary to make accurate predictions. Additionally, a single exam in medical imaging often comes with a set of views which must be fused in order to reach a correct conclusion. In our work, we propose to use a multi-view deep convolutional neural network that handles a set of high-resolution medical images. We evaluate it on large-scale mammography-based breast cancer screening (BI-RADS prediction) using 886,000 images. We focus on investigating the impact of the training set size and image size on the prediction accuracy. Our results highlight that performance increases with the size of training set, and that the best performance can only be achieved using the original resolution. In the reader study, performed on a random subset of the test set, we confirmed the efficacy of our model, which achieved performance comparable to a committee of radiologists when presented with the same data.
Breast density classification with deep convolutional neural networks
Wu, Nan, Geras, Krzysztof J., Shen, Yiqiu, Su, Jingyi, Kim, S. Gene, Kim, Eric, Wolfson, Stacey, Moy, Linda, Cho, Kyunghyun
Breast density classification is an essential part of breast cancer screening. Although a lot of prior work considered this problem as a task for learning algorithms, to our knowledge, all of them used small and not clinically realistic data both for training and evaluation of their models. In this work, we explore the limits of this task with a data set coming from over 200,000 breast cancer screening exams. We use this data to train and evaluate a strong convolutional neural network classifier. In a reader study, we find that our model can perform this task comparably to a human expert.