Goto

Collaborating Authors

 Kim, Doyoung


M\'elange: Cost Efficient Large Language Model Serving by Exploiting GPU Heterogeneity

arXiv.org Artificial Intelligence

Large language models (LLMs) are increasingly integrated into many online services, yet they remain cost-prohibitive to deploy due to the requirement of expensive GPU instances. Prior work has addressed the high cost of LLM serving by improving the inference engine, but less attention has been given to selecting the most cost-efficient GPU type(s) for a specific LLM service. There is a large and growing landscape of GPU types and, within these options, higher cost does not always lead to increased performance. Instead, through a comprehensive investigation, we find that three key LLM service characteristics (request size, request rate, SLO) strongly influence GPU cost efficiency, and differing GPU types are most cost efficient for differing LLM service settings. As a result, the most cost-efficient allocation for a given service is typically a mix of heterogeneous GPU types. Based on this analysis, we introduce M\'elange, a GPU allocation framework that navigates these diverse LLM service characteristics and heterogeneous GPU option space to automatically and efficiently derive the minimal-cost GPU allocation for a given LLM service. We formulate the GPU allocation task as a cost-aware bin packing problem where GPUs are bins and items are slices of the service workload. Our formulation's constraints account for a service's unique characteristics, allowing M\'elange to be flexible to support diverse service settings and heterogeneity-aware to adapt the GPU allocation to a specific service. Compared to using only a single GPU type, M\'elange reduces deployment costs by up to 77% in conversational settings, 33% in document-based settings, and 51% in a mixed setting.


Semiparametric Token-Sequence Co-Supervision

arXiv.org Artificial Intelligence

In this work, we introduce a semiparametric token-sequence co-supervision training method. It trains a language model by simultaneously leveraging supervision from the traditional next token prediction loss which is calculated over the parametric token embedding space and the next sequence prediction loss which is calculated over the nonparametric sequence embedding space. The nonparametric sequence embedding space is constructed by a separate language model tasked to condense an input text into a single representative embedding. Our experiments demonstrate that a model trained via both supervisions consistently surpasses models trained via each supervision independently. Analysis suggests that this co-supervision encourages a broader generalization capability across the model. Especially, the robustness of parametric token space which is established during the pretraining step tends to effectively enhance the stability of nonparametric sequence embedding space, a new space established by another language model.


Adaptive Shortcut Debiasing for Online Continual Learning

arXiv.org Artificial Intelligence

We propose a novel framework DropTop that suppresses the shortcut bias in online continual learning (OCL) while being adaptive to the varying degree of the shortcut bias incurred by continuously changing environment. By the observed high-attention property of the shortcut bias, highly-activated features are considered candidates for debiasing. More importantly, resolving the limitation of the online environment where prior knowledge and auxiliary data are not ready, two novel techniques -- feature map fusion and adaptive intensity shifting -- enable us to automatically determine the appropriate level and proportion of the candidate shortcut features to be dropped. Extensive experiments on five benchmark datasets demonstrate that, when combined with various OCL algorithms, DropTop increases the average accuracy by up to 10.4% and decreases the forgetting by up to 63.2%.


One Size Fits All for Semantic Shifts: Adaptive Prompt Tuning for Continual Learning

arXiv.org Artificial Intelligence

In real-world continual learning scenarios, tasks often exhibit intricate and unpredictable semantic shifts, posing challenges for fixed prompt management strategies. We identify the inadequacy of universal and specific prompting in handling these dynamic shifts. Universal prompting is ineffective for tasks with abrupt semantic changes, while specific prompting struggles with overfitting under mild semantic shifts. To overcome these limitations, we propose an adaptive prompting approach that tailors minimal yet sufficient prompts based on the task semantics. Our methodology, SemPrompt, incorporates a two-level semantic grouping process: macroscopic semantic assignment and microscopic semantic refinement. This process ensures optimal prompt utilization for varying task semantics, improving the efficiency and effectiveness of learning in real-world CL settings. Our experimental results demonstrate that SemPrompt consistently outperforms existing methods in adapting to diverse semantic shifts in tasks.


How Well Do Large Language Models Truly Ground?

arXiv.org Artificial Intelligence

Reliance on the inherent knowledge of Large Language Models (LLMs) can cause issues such as hallucinations, lack of control, and difficulties in integrating variable knowledge. To mitigate this, LLMs can be probed to generate responses by grounding on external context, often given as input (knowledge-augmented models). Yet, previous research is often confined to a narrow view of the term "grounding", often only focusing on whether the response contains the correct answer or not, which does not ensure the reliability of the entire response. To address this limitation, we introduce a strict definition of grounding: a model is considered truly grounded when its responses (1) fully utilize necessary knowledge from the provided context, and (2) don't exceed the knowledge within the contexts. We introduce a new dataset and a grounding metric to assess this new definition and perform experiments across 13 LLMs of different sizes and training methods to provide insights into the factors that influence grounding performance. Our findings contribute to a better understanding of how to improve grounding capabilities and suggest an area of improvement toward more reliable and controllable LLM applications.


Robust Data Pruning under Label Noise via Maximizing Re-labeling Accuracy

arXiv.org Artificial Intelligence

Data pruning, which aims to downsize a large training set into a small informative subset, is crucial for reducing the enormous computational costs of modern deep learning. Though large-scale data collections invariably contain annotation noise and numerous robust learning methods have been developed, data pruning for the noise-robust learning scenario has received little attention. With state-of-the-art Re-labeling methods that self-correct erroneous labels while training, it is challenging to identify which subset induces the most accurate re-labeling of erroneous labels in the entire training set. In this paper, we formalize the problem of data pruning with re-labeling. We first show that the likelihood of a training example being correctly re-labeled is proportional to the prediction confidence of its neighborhood in the subset. Therefore, we propose a novel data pruning algorithm, Prune4Rel, that finds a subset maximizing the total neighborhood confidence of all training examples, thereby maximizing the re-labeling accuracy and generalization performance. Extensive experiments on four real and one synthetic noisy datasets show that \algname{} outperforms the baselines with Re-labeling models by up to 9.1% as well as those with a standard model by up to 21.6%.


Efficiently Enhancing Zero-Shot Performance of Instruction Following Model via Retrieval of Soft Prompt

arXiv.org Artificial Intelligence

Enhancing the zero-shot performance of instruction-following models requires heavy computation, either by scaling the total number of training datasets or the model size. In this work, we explore how retrieval of soft prompts obtained through prompt tuning can efficiently assist hard prompts in zero-shot task generalization. Specifically, we train soft prompt embeddings for each prompt through prompt tuning, store the samples of the training instances mapped with the prompt embeddings, and retrieve the corresponding prompt embedding of the training instance closest to the query instance during inference. While only adding 0.007% additional parameters, retrieval of soft prompt enhances the performance of T0 on unseen tasks by outperforming it on 10 out of 11 datasets as well as improving the mean accuracy of T0 on BIG-bench benchmark by 2.39% points. Also, we report an interesting finding that retrieving source embeddings trained on similar answer choice formats is more important than those on similar task types.


The CoT Collection: Improving Zero-shot and Few-shot Learning of Language Models via Chain-of-Thought Fine-Tuning

arXiv.org Artificial Intelligence

Language models (LMs) with less than 100B parameters are known to perform poorly on chain-of-thought (CoT) reasoning in contrast to large LMs when solving unseen tasks. In this work, we aim to equip smaller LMs with the step-by-step reasoning capability by instruction tuning with CoT rationales. In order to achieve this goal, we first introduce a new instruction-tuning dataset called the CoT Collection, which augments the existing Flan Collection (including only 9 CoT tasks) with additional 1.84 million rationales across 1,060 tasks. We show that CoT fine-tuning Flan-T5 (3B & 11B) with CoT Collection enables smaller LMs to have better CoT capabilities on unseen tasks. On the BIG-Bench-Hard (BBH) benchmark, we report an average improvement of +4.34% (Flan-T5 3B) and +2.60% (Flan-T5 11B), in terms of zero-shot task accuracy. Furthermore, we show that instruction tuning with CoT Collection allows LMs to possess stronger few-shot learning capabilities on 4 domain-specific tasks, resulting in an improvement of +2.24% (Flan-T5 3B) and +2.37% (Flan-T5 11B), even outperforming ChatGPT utilizing demonstrations until the max length by a +13.98% margin. Our code, the CoT Collection data, and model checkpoints are publicly available.


FLASK: Fine-grained Language Model Evaluation based on Alignment Skill Sets

arXiv.org Artificial Intelligence

Evaluation of Large Language Models (LLMs) is challenging because instruction-following necessitates alignment with human values and the required set of skills varies depending on the instruction. However, previous studies have mainly focused on coarse-grained evaluation (i.e. overall preference-based evaluation), which limits interpretability since it does not consider the nature of user instructions that require instance-wise skill composition. In this paper, we introduce FLASK (Fine-grained Language Model Evaluation based on Alignment Skill Sets), a fine-grained evaluation protocol for both human-based and model-based evaluation which decomposes coarse-level scoring to a skill set-level scoring for each instruction. We experimentally observe that the fine-graininess of evaluation is crucial for attaining a holistic view of model performance and increasing the reliability of the evaluation. Using FLASK, we compare multiple open-source and proprietary LLMs and observe a high correlation between model-based and human-based evaluations. We publicly release the evaluation data and code implementation at https://github.com/kaistAI/FLASK.


Guess the Instruction! Flipped Learning Makes Language Models Stronger Zero-Shot Learners

arXiv.org Artificial Intelligence

Meta-training, which fine-tunes the language model (LM) on various downstream tasks by maximizing the likelihood of the target label given the task instruction and input instance, has improved the zero-shot task generalization performance. However, meta-trained LMs still struggle to generalize to challenging tasks containing novel labels unseen during meta-training. In this paper, we propose Flipped Learning, an alternative method of meta-training which trains the LM to generate the task instruction given the input instance and label. During inference, the LM trained with Flipped Learning, referred to as Flipped, selects the label option that is most likely to generate the task instruction. On 14 tasks of the BIG-bench benchmark, the 11B-sized Flipped outperforms zero-shot T0-11B and even a 16 times larger 3-shot GPT-3 (175B) on average by 8.4% and 9.7% points, respectively. Flipped gives particularly large improvements on tasks with unseen labels, outperforming T0-11B by up to +20% average F1 score. This indicates that the strong task generalization of Flipped comes from improved generalization to novel labels. We release our code at https://github.com/seonghyeonye/Flipped-Learning.