Goto

Collaborating Authors

 Kim, Doyeon


Fix the Noise: Disentangling Source Feature for Transfer Learning of StyleGAN

arXiv.org Artificial Intelligence

Transfer learning of StyleGAN has recently shown great potential to solve diverse tasks, especially in domain translation. Previous methods utilized a source model by swapping or freezing weights during transfer learning, however, they have limitations on visual quality and controlling source features. In other words, they require additional models that are computationally demanding and have restricted control steps that prevent a smooth transition. In this paper, we propose a new approach to overcome these limitations. Instead of swapping or freezing, we introduce a simple feature matching loss to improve generation quality. In addition, to control the degree of source features, we train a target model with the proposed strategy, FixNoise, to preserve the source features only in a disentangled subspace of a target feature space. Owing to the disentangled feature space, our method can smoothly control the degree of the source features in a single model. Extensive experiments demonstrate that the proposed method can generate more consistent and realistic images than previous works.


Fix the Noise: Disentangling Source Feature for Controllable Domain Translation

arXiv.org Artificial Intelligence

Recent studies show strong generative performance in domain translation especially by using transfer learning techniques on the unconditional generator. However, the control between different domain features using a single model is still challenging. Existing methods often require additional models, which is computationally demanding and leads to unsatisfactory visual quality. In addition, they have restricted control steps, which prevents a smooth transition. In this paper, we propose a new approach for high-quality domain translation with better controllability. The key idea is to preserve source features within a disentangled subspace of a target feature space. This allows our method to smoothly control the degree to which it preserves source features while generating images from an entirely new domain using only a single model. Our extensive experiments show that the proposed method can produce more consistent and realistic images than previous works and maintain precise controllability over different levels of transformation. The code is available at https://github.com/LeeDongYeun/FixNoise.


Feature Structure Distillation with Centered Kernel Alignment in BERT Transferring

arXiv.org Artificial Intelligence

Knowledge distillation is an approach to transfer information on representations from a teacher to a student by reducing their difference. A challenge of this approach is to reduce the flexibility of the student's representations inducing inaccurate learning of the teacher's knowledge. To resolve it in transferring, we investigate distillation of structures of representations specified to three types: intra-feature, local inter-feature, global inter-feature structures. To transfer them, we introduce feature structure distillation methods based on the Centered Kernel Alignment, which assigns a consistent value to similar features structures and reveals more informative relations. In particular, a memory-augmented transfer method with clustering is implemented for the global structures. The methods are empirically analyzed on the nine tasks for language understanding of the GLUE dataset with Bidirectional Encoder Representations from Transformers (BERT), which is a representative neural language model. In the results, the proposed methods effectively transfer the three types of structures and improve performance compared to state-of-the-art distillation methods. Indeed, the code for the methods is available in https://github.com/maroo-sky/FSD.


A Worker-Task Specialization Model for Crowdsourcing: Efficient Inference and Fundamental Limits

arXiv.org Machine Learning

Crowdsourcing system has emerged as an effective platform to label data with relatively low cost by using non-expert workers. However, inferring correct labels from multiple noisy answers on data has been a challenging problem, since the quality of answers varies widely across tasks and workers. Many previous works have assumed a simple model where the order of workers in terms of their reliabilities is fixed across tasks, and focused on estimating the worker reliabilities to aggregate answers with different weights. We propose a highly general $d$-type worker-task specialization model in which the reliability of each worker can change depending on the type of a given task, where the number $d$ of types can scale in the number of tasks. In this model, we characterize the optimal sample complexity to correctly infer labels with any given recovery accuracy, and propose an inference algorithm achieving the order-wise optimal bound. We conduct experiments both on synthetic and real-world datasets, and show that our algorithm outperforms the existing algorithms developed based on strict model assumptions.


Self-supervised GAN Detector

arXiv.org Artificial Intelligence

Although the recent advancement in generative models brings diverse advantages to society, it can also be abused with malicious purposes, such as fraud, defamation, and fake news. To prevent such cases, vigorous research is conducted to distinguish the generated images from the real images, but challenges still remain to distinguish the unseen generated images outside of the training settings. Such limitations occur due to data dependency arising from the model's overfitting issue to the training data generated by specific GANs. To overcome this issue, we adopt a self-supervised scheme to propose a novel framework. Our proposed method is composed of the artificial fingerprint generator reconstructing the high-quality artificial fingerprints of GAN images for detailed analysis, and the GAN detector distinguishing GAN images by learning the reconstructed artificial fingerprints. To improve the generalization of the artificial fingerprint generator, we build multiple autoencoders with different numbers of upconvolution layers. With numerous ablation studies, the robust generalization of our method is validated by outperforming the generalization of the previous state-of-the-art algorithms, even without utilizing the GAN images of the training dataset.


MToFNet: Object Anti-Spoofing with Mobile Time-of-Flight Data

arXiv.org Artificial Intelligence

In online markets, sellers can maliciously recapture others' images on display screens to utilize as spoof images, which can be challenging to distinguish in human eyes. To prevent such harm, we propose an anti-spoofing method using the paired rgb images and depth maps provided by the mobile camera with a Time-of-Fight sensor. When images are recaptured on display screens, various patterns differing by the screens as known as the moir\'e patterns can be also captured in spoof images. These patterns lead the anti-spoofing model to be overfitted and unable to detect spoof images recaptured on unseen media. To avoid the issue, we build a novel representation model composed of two embedding models, which can be trained without considering the recaptured images. Also, we newly introduce mToF dataset, the largest and most diverse object anti-spoofing dataset, and the first to utilize ToF data. Experimental results confirm that our model achieves robust generalization even across unseen domains.


FICGAN: Facial Identity Controllable GAN for De-identification

arXiv.org Artificial Intelligence

In this work, we present Facial Identity Controllable GAN (FICGAN) for not only generating high-quality de-identified face images with ensured privacy protection, but also detailed controllability on attribute preservation for enhanced data utility. We tackle the less-explored yet desired functionality in face de-identification based on the two factors. First, we focus on the challenging issue to obtain a high level of privacy protection in the de-identification task while uncompromising the image quality. Second, we analyze the facial attributes related to identity and non-identity and explore the trade-off between the degree of face de-identification and preservation of the source attributes for enhanced data utility. Based on the analysis, we develop Facial Identity Controllable GAN (FICGAN), an autoencoder-based conditional generative model that learns to disentangle the identity attributes from non-identity attributes on a face image. By applying the manifold k-same algorithm to satisfy k-anonymity for strengthened security, our method achieves enhanced privacy protection in de-identified face images. Numerous experiments demonstrate that our model outperforms others in various scenarios of face de-identification.