Goto

Collaborating Authors

 Kim, Dongkwan


LLM-as-an-Interviewer: Beyond Static Testing Through Dynamic LLM Evaluation

arXiv.org Artificial Intelligence

We introduce LLM-as-an-Interviewer, a novel paradigm for evaluating large language models (LLMs). This approach leverages multi-turn interactions where the LLM interviewer actively provides feedback on responses and poses follow-up questions to the evaluated LLM. At the start of the interview, the LLM interviewer dynamically modifies datasets to generate initial questions, mitigating data contamination. We apply the LLM-as-an-Interviewer framework to evaluate six models on the MATH and DepthQA tasks. Our results show that the framework effectively provides insights into LLM performance, including the quality of initial responses, adaptability to feedback, and ability to address follow-up queries like clarification or additional knowledge requests. The framework also addresses key limitations of conventional methods like LLM-as-a-Judge, including verbosity bias and inconsistency across runs. Finally, we propose the Interview Report, which aggregates insights from the interview process, providing examples and a comprehensive analysis of the LLM's strengths and weaknesses. This report offers a detailed snapshot of the model's real-world applicability. The code for our framework is publicly available at https://github.com/interview-eval/.


Generalizing Weisfeiler-Lehman Kernels to Subgraphs

arXiv.org Artificial Intelligence

Subgraph representation learning has been effective in solving various real-world problems. However, current graph neural networks (GNNs) produce suboptimal results for subgraph-level tasks due to their inability to capture complex interactions within and between subgraphs. To provide a more expressive and efficient alternative, we propose WLKS, a Weisfeiler-Lehman (WL) kernel generalized for subgraphs by applying the WL algorithm on induced k-hop neighborhoods. We combine kernels across different k-hop levels to capture richer structural information that is not fully encoded in existing models. Our approach can balance expressiveness and efficiency by eliminating the need for neighborhood sampling. In experiments on eight real-world and synthetic benchmarks, WLKS significantly outperforms leading approaches on five datasets while reducing training time, ranging from 0.01x to 0.25x compared to the state-of-the-art. Subgraph representation learning has effectively tackled various real-world problems (Bordes et al., 2014; Luo, 2022; Hamidi Rad et al., 2022; Maheshwari et al., 2024). However, existing graph neural networks (GNNs) still produce suboptimal representations for subgraph-level tasks since they fail to capture arbitrary interactions between and within subgraph structures. Thus, state-of-the-art models for subgraphs have to employ hand-crafted channels (Alsentzer et al., 2020), node labeling (Wang & Zhang, 2022), and structure approximations (Kim & Oh, 2024) to encode subgraphs' complex internal and border structures.


Perceptions to Beliefs: Exploring Precursory Inferences for Theory of Mind in Large Language Models

arXiv.org Artificial Intelligence

While humans naturally develop theory of mind (ToM), the capability to understand other people's mental states and beliefs, state-of-the-art large language models (LLMs) underperform on simple ToM benchmarks. We posit that we can extend our understanding of LLMs' ToM abilities by evaluating key human ToM precursors -- perception inference and perception-to-belief inference -- in LLMs. We introduce two datasets, Percept-ToMi and Percept-FANToM, to evaluate these precursory inferences for ToM in LLMs by annotating characters' perceptions on ToMi and FANToM, respectively. Our evaluation of eight state-of-the-art LLMs reveals that the models generally perform well in perception inference while exhibiting limited capability in perception-to-belief inference (e.g., lack of inhibitory control). Based on these results, we present PercepToM, a novel ToM method leveraging LLMs' strong perception inference capability while supplementing their limited perception-to-belief inference. Experimental results demonstrate that PercepToM significantly enhances LLM's performance, especially in false belief scenarios.


Translating Subgraphs to Nodes Makes Simple GNNs Strong and Efficient for Subgraph Representation Learning

arXiv.org Artificial Intelligence

Subgraph representation learning has emerged as an important problem, but it is by default approached with specialized graph neural networks on a large global graph. These models demand extensive memory and computational resources but challenge modeling hierarchical structures of subgraphs. In this paper, we propose Subgraph-To-Node (S2N) translation, a novel formulation for learning representations of subgraphs. Specifically, given a set of subgraphs in the global graph, we construct a new graph by coarsely transforming subgraphs into nodes. Demonstrating both theoretical and empirical evidence, S2N not only significantly reduces memory and computational costs compared to state-of-the-art models but also outperforms them by capturing both local and global structures of the subgraph. By leveraging graph coarsening methods, our method outperforms baselines even in a data-scarce setting with insufficient subgraphs. Our experiments on eight benchmarks demonstrate that fined-tuned models with S2N translation can process 183 -- 711 times more subgraph samples than state-of-the-art models at a better or similar performance level.