Plotting

 Kim, Donghyun


Task Relation-aware Continual User Representation Learning

arXiv.org Artificial Intelligence

User modeling, which learns to represent users into a low-dimensional representation space based on their past behaviors, got a surge of interest from the industry for providing personalized services to users. Previous efforts in user modeling mainly focus on learning a task-specific user representation that is designed for a single task. However, since learning task-specific user representations for every task is infeasible, recent studies introduce the concept of universal user representation, which is a more generalized representation of a user that is relevant to a variety of tasks. Despite their effectiveness, existing approaches for learning universal user representations are impractical in real-world applications due to the data requirement, catastrophic forgetting and the limited learning capability for continually added tasks. In this paper, we propose a novel continual user representation learning method, called TERACON, whose learning capability is not limited as the number of learned tasks increases while capturing the relationship between the tasks. The main idea is to introduce an embedding for each task, i.e., task embedding, which is utilized to generate task-specific soft masks that not only allow the entire model parameters to be updated until the end of training sequence, but also facilitate the relationship between the tasks to be captured. Moreover, we introduce a novel knowledge retention module with pseudo-labeling strategy that successfully alleviates the long-standing problem of continual learning, i.e., catastrophic forgetting. Extensive experiments on public and proprietary real-world datasets demonstrate the superiority and practicality of TERACON. Our code is available at https://github.com/Sein-Kim/TERACON.


Learning low-dimensional dynamics from whole-brain data improves task capture

arXiv.org Artificial Intelligence

The neural dynamics underlying brain activity are critical to understanding cognitive processes and mental disorders. However, current voxel-based whole-brain dimensionality reduction techniques fall short of capturing these dynamics, producing latent timeseries that inadequately relate to behavioral tasks. To address this issue, we introduce a novel approach to learning low-dimensional approximations of neural dynamics by using a sequential variational autoencoder (SVAE) that represents the latent dynamical system via a neural ordinary differential equation (NODE). Importantly, our method finds smooth dynamics that can predict cognitive processes with accuracy higher than classical methods. Our method also shows improved spatial localization to task-relevant brain regions and identifies well-known structures such as the motor homunculus from fMRI motor task recordings. We also find that non-linear projections to the latent space enhance performance for specific tasks, offering a promising direction for future research. We evaluate our approach on various task-fMRI datasets, including motor, working memory, and relational processing tasks, and demonstrate that it outperforms widely used dimensionality reduction techniques in how well the latent timeseries relates to behavioral sub-tasks, such as left-hand or right-hand tapping. Additionally, we replace the NODE with a recurrent neural network (RNN) and compare the two approaches to understand the importance of explicitly learning a dynamical system. Lastly, we analyze the robustness of the learned dynamical systems themselves and find that their fixed points are robust across seeds, highlighting our method's potential for the analysis of cognitive processes as dynamical systems.


Event Camera-based Visual Odometry for Dynamic Motion Tracking of a Legged Robot Using Adaptive Time Surface

arXiv.org Artificial Intelligence

Our paper proposes a direct sparse visual odometry method that combines event and RGB-D data to estimate the pose of agile-legged robots during dynamic locomotion and acrobatic behaviors. Event cameras offer high temporal resolution and dynamic range, which can eliminate the issue of blurred RGB images during fast movements. This unique strength holds a potential for accurate pose estimation of agile-legged robots, which has been a challenging problem to tackle. Our framework leverages the benefits of both RGB-D and event cameras to achieve robust and accurate pose estimation, even during dynamic maneuvers such as jumping and landing a quadruped robot, the Mini-Cheetah. Our major contributions are threefold: Firstly, we introduce an adaptive time surface (ATS) method that addresses the whiteout and blackout issue in conventional time surfaces by formulating pixel-wise decay rates based on scene complexity and motion speed. Secondly, we develop an effective pixel selection method that directly samples from event data and applies sample filtering through ATS, enabling us to pick pixels on distinct features. Lastly, we propose a nonlinear pose optimization formula that simultaneously performs 3D-2D alignment on both RGB-based and event-based maps and images, allowing the algorithm to fully exploit the benefits of both data streams. We extensively evaluate the performance of our framework on both public datasets and our own quadruped robot dataset, demonstrating its effectiveness in accurately estimating the pose of agile robots during dynamic movements.


On Web-based Visual Corpus Construction for Visual Document Understanding

arXiv.org Artificial Intelligence

In recent years, research on visual document understanding (VDU) has grown significantly, with a particular emphasis on the development of self-supervised learning methods. However, one of the significant challenges faced in this field is the limited availability of publicly accessible visual corpora or extensive collections of images with detailed text annotations, particularly for non-Latin or resource-scarce languages. To address this challenge, we propose Web-based Visual Corpus Builder (Webvicob), a dataset generator engine capable of constructing largescale, multilingual visual corpora from raw Wikipedia HTML dumps. Our experiments demonstrate that the data generated by Webvicob can be used to train robust VDU models that perform well on various downstream tasks, such as DocVQA and post-OCR parsing. Furthermore, when using a dataset of 1 million images generated by Webvicob, we observed an improvement of over 13% on the DocVQA Task 3 compared to a dataset of 11 million images from the IIT-CDIP. The implementation of our engine is publicly available on https://github.com/clovaai/


CODA-Prompt: COntinual Decomposed Attention-based Prompting for Rehearsal-Free Continual Learning

arXiv.org Artificial Intelligence

Computer vision models suffer from a phenomenon known as catastrophic forgetting when learning novel concepts from continuously shifting training data. Typical solutions for this continual learning problem require extensive rehearsal of previously seen data, which increases memory costs and may violate data privacy. Recently, the emergence of large-scale pre-trained vision transformer models has enabled prompting approaches as an alternative to data-rehearsal. These approaches rely on a key-query mechanism to generate prompts and have been found to be highly resistant to catastrophic forgetting in the well-established rehearsal-free continual learning setting. However, the key mechanism of these methods is not trained end-to-end with the task sequence. Our experiments show that this leads to a reduction in their plasticity, hence sacrificing new task accuracy, and inability to benefit from expanded parameter capacity. We instead propose to learn a set of prompt components which are assembled with input-conditioned weights to produce input-conditioned prompts, resulting in a novel attention-based end-to-end key-query scheme. Our experiments show that we outperform the current SOTA method DualPrompt on established benchmarks by as much as 4.5% in average final accuracy. We also outperform the state of art by as much as 4.4% accuracy on a continual learning benchmark which contains both class-incremental and domain-incremental task shifts, corresponding to many practical settings. Our code is available at https://github.com/GT-RIPL/CODA-Prompt


ConStruct-VL: Data-Free Continual Structured VL Concepts Learning

arXiv.org Artificial Intelligence

Recently, large-scale pre-trained Vision-and-Language (VL) foundation models have demonstrated remarkable capabilities in many zero-shot downstream tasks, achieving competitive results for recognizing objects defined by as little as short text prompts. However, it has also been shown that VL models are still brittle in Structured VL Concept (SVLC) reasoning, such as the ability to recognize object attributes, states, and inter-object relations. This leads to reasoning mistakes, which need to be corrected as they occur by teaching VL models the missing SVLC skills; often this must be done using private data where the issue was found, which naturally leads to a data-free continual (no task-id) VL learning setting. In this work, we introduce the first Continual Data-Free Structured VL Concepts Learning (ConStruct-VL) benchmark and show it is challenging for many existing data-free CL strategies. We, therefore, propose a data-free method comprised of a new approach of Adversarial Pseudo-Replay (APR) which generates adversarial reminders of past tasks from past task models. To use this method efficiently, we also propose a continual parameter-efficient Layered-LoRA (LaLo) neural architecture allowing no-memory-cost access to all past models at train time. We show this approach outperforms all data-free methods by as much as ~7% while even matching some levels of experience-replay (prohibitive for applications where data-privacy must be preserved). Our code is publicly available at https://github.com/jamessealesmith/ConStruct-VL


Neuromorphic High-Frequency 3D Dancing Pose Estimation in Dynamic Environment

arXiv.org Artificial Intelligence

As a beloved sport worldwide, dancing is getting integrated into traditional and virtual reality-based gaming platforms nowadays. It opens up new opportunities in the technology-mediated dancing space. These platforms primarily rely on passive and continuous human pose estimation as an input capture mechanism. Existing solutions are mainly based on RGB or RGB-Depth cameras for dance games. The former suffers in low-lighting conditions due to the motion blur and low sensitivity, while the latter is too power-hungry, has a low frame rate, and has limited working distance. With ultra-low latency, energy efficiency, and wide dynamic range characteristics, the event camera is a promising solution to overcome these shortcomings. We propose YeLan, an event camera-based 3-dimensional high-frequency human pose estimation(HPE) system that survives low-lighting conditions and dynamic backgrounds. We collected the world's first event camera dance dataset and developed a fully customizable motion-to-event physics-aware simulator. YeLan outperforms the baseline models in these challenging conditions and demonstrated robustness against different types of clothing, background motion, viewing angle, occlusion, and lighting fluctuations.


Learning to Jump from Pixels

arXiv.org Artificial Intelligence

One of the grand challenges in robotics is to construct legged systems that can successfully navigate novel and complex landscapes. Recent work has made impressive strides toward the blind traversal of a wide diversity of natural and man-made terrains [1, 2]. Blind walkers primarily rely on proprioception and robust control schemes to achieve sturdy locomotion in challenging conditions including snow, thick vegetation, and slippery mud. The downside of blindness is the inability to execute motions that anticipate the land surface in front of the robot. This is especially prohibitive on terrains with significant elevation discontinuities. For instance, crossing a wide gap requires the robot to jump, which cannot be initiated without knowing where and how wide the gap is. Without vision, even the most robust system would either step in the gap and fall or otherwise treat the gap as an obstacle and stop. This inability to plan results in conservative behavior that is unable to achieve the energy efficiency or the speed afforded by advanced hardware.


CogME: A Novel Evaluation Metric for Video Understanding Intelligence

arXiv.org Artificial Intelligence

Developing video understanding intelligence is quite challenging because it requires holistic integration of images, scripts, and sounds based on natural language processing, temporal dependency, and reasoning. Recently, substantial attempts have been made on several video datasets with associated question answering (QA) on a large scale. However, existing evaluation metrics for video question answering (VideoQA) do not provide meaningful analysis. To make progress, we argue that a well-made framework, established on the way humans understand, is required to explain and evaluate the performance of understanding in detail. Then we propose a top-down evaluation system for VideoQA, based on the cognitive process of humans and story elements: Cognitive Modules for Evaluation (CogME). CogME is composed of three cognitive modules: targets, contents, and thinking. The interaction among the modules in the understanding procedure can be expressed in one sentence as follows: "I understand the CONTENT of the TARGET through a way of THINKING." Each module has sub-components derived from the story elements. We can specify the required aspects of understanding by annotating the sub-components to individual questions. CogME thus provides a framework for an elaborated specification of VideoQA datasets. To examine the suitability of a VideoQA dataset for validating video understanding intelligence, we evaluated the baseline model of the DramaQA dataset by applying CogME. The evaluation reveals that story elements are unevenly reflected in the existing dataset, and the model based on the dataset may cause biased predictions. Although this study has only been able to grasp a narrow range of stories, we expect that it offers the first step in considering the cognitive process of humans on the video understanding intelligence of humans and AI.


Unsupervised Differentiable Multi-aspect Network Embedding

arXiv.org Machine Learning

Network embedding is an influential graph mining technique for representing nodes in a graph as distributed vectors. However, the majority of network embedding methods focus on learning a single vector representation for each node, which has been recently criticized for not being capable of modeling multiple aspects of a node. To capture the multiple aspects of each node, existing studies mainly rely on offline graph clustering performed prior to the actual embedding, which results in the cluster membership of each node (i.e., node aspect distribution) fixed throughout training of the embedding model. We argue that this not only makes each node always have the same aspect distribution regardless of its dynamic context, but also hinders the end-to-end training of the model that eventually leads to the final embedding quality largely dependent on the clustering. In this paper, we propose a novel end-to-end framework for multi-aspect network embedding, called asp2vec, in which the aspects of each node are dynamically assigned based on its local context. More precisely, among multiple aspects, we dynamically assign a single aspect to each node based on its current context, and our aspect selection module is end-to-end differentiable via the Gumbel-Softmax trick. We also introduce the aspect regularization framework to capture the interactions among the multiple aspects in terms of relatedness and diversity. We further demonstrate that our proposed framework can be readily extended to heterogeneous networks. Extensive experiments towards various downstream tasks on various types of homogeneous networks and a heterogeneous network demonstrate the superiority of asp2vec.