Kim, David
Thing2Reality: Transforming 2D Content into Conditioned Multiviews and 3D Gaussian Objects for XR Communication
Hu, Erzhen, Li, Mingyi, Hong, Jungtaek, Qian, Xun, Olwal, Alex, Kim, David, Heo, Seongkook, Du, Ruofei
During remote communication, participants often share both digital and physical content, such as product designs, digital assets, and environments, to enhance mutual understanding. Recent advances in augmented communication have facilitated users to swiftly create and share digital 2D copies of physical objects from video feeds into a shared space. However, conventional 2D representations of digital objects restricts users' ability to spatially reference items in a shared immersive environment. To address this, we propose Thing2Reality, an Extended Reality (XR) communication platform that enhances spontaneous discussions of both digital and physical items during remote sessions. With Thing2Reality, users can quickly materialize ideas or physical objects in immersive environments and share them as conditioned multiview renderings or 3D Gaussians. Thing2Reality enables users to interact with remote objects or discuss concepts in a collaborative manner. Our user study revealed that the ability to interact with and manipulate 3D representations of objects significantly enhances the efficiency of discussions, with the potential to augment discussion of 2D artifacts.
Augmented Object Intelligence: Making the Analog World Interactable with XR-Objects
Dogan, Mustafa Doga, Gonzalez, Eric J., Colaco, Andrea, Ahuja, Karan, Du, Ruofei, Lee, Johnny, Gonzalez-Franco, Mar, Kim, David
Seamless integration of physical objects as interactive digital entities remains a challenge for spatial computing. This paper introduces Augmented Object Intelligence (AOI), a novel XR interaction paradigm designed to blur the lines between digital and physical by equipping real-world objects with the ability to interact as if they were digital, where every object has the potential to serve as a portal to vast digital functionalities. Our approach utilizes object segmentation and classification, combined with the power of Multimodal Large Language Models (MLLMs), to facilitate these interactions. We implement the AOI concept in the form of XR-Objects, an open-source prototype system that provides a platform for users to engage with their physical environment in rich and contextually relevant ways. This system enables analog objects to not only convey information but also to initiate digital actions, such as querying for details or executing tasks. Our contributions are threefold: (1) we define the AOI concept and detail its advantages over traditional AI assistants, (2) detail the XR-Objects system's open-source design and implementation, and (3) show its versatility through a variety of use cases and a user study.
RABBIT: A Robot-Assisted Bed Bathing System with Multimodal Perception and Integrated Compliance
Madan, Rishabh, Valdez, Skyler, Kim, David, Fang, Sujie, Zhong, Luoyan, Virtue, Diego, Bhattacharjee, Tapomayukh
This paper introduces RABBIT, a novel robot-assisted bed bathing system designed to address the growing need for assistive technologies in personal hygiene tasks. It combines multimodal perception and dual (software and hardware) compliance to perform safe and comfortable physical human-robot interaction. Using RGB and thermal imaging to segment dry, soapy, and wet skin regions accurately, RABBIT can effectively execute washing, rinsing, and drying tasks in line with expert caregiving practices. Our system includes custom-designed motion primitives inspired by human caregiving techniques, and a novel compliant end-effector called Scrubby, optimized for gentle and effective interactions. We conducted a user study with 12 participants, including one participant with severe mobility limitations, demonstrating the system's effectiveness and perceived comfort. Supplementary material and videos can be found on our website https://emprise.cs.cornell.edu/rabbit.
InstructPipe: Building Visual Programming Pipelines with Human Instructions
Zhou, Zhongyi, Jin, Jing, Phadnis, Vrushank, Yuan, Xiuxiu, Jiang, Jun, Qian, Xun, Zhou, Jingtao, Huang, Yiyi, Xu, Zheng, Zhang, Yinda, Wright, Kristen, Mayes, Jason, Sherwood, Mark, Lee, Johnny, Olwal, Alex, Kim, David, Iyengar, Ram, Li, Na, Du, Ruofei
Visual programming provides beginner-level programmers with a coding-free experience to build their customized pipelines. Existing systems require users to build a pipeline entirely from scratch, implying that novice users need to set up and link appropriate nodes all by themselves, starting from a blank workspace. We present InstructPipe, an AI assistant that enables users to start prototyping machine learning (ML) pipelines with text instructions. We designed two LLM modules and a code interpreter to execute our solution. LLM modules generate pseudocode of a target pipeline, and the interpreter renders a pipeline in the node-graph editor for further human-AI collaboration. Technical evaluations reveal that InstructPipe reduces user interactions by 81.1% compared to traditional methods. Our user study (N=16) showed that InstructPipe empowers novice users to streamline their workflow in creating desired ML pipelines, reduce their learning curve, and spark innovative ideas with open-ended commands.
Multiscale Vision Transformer With Deep Clustering-Guided Refinement for Weakly Supervised Object Localization
Kim, David, Cha, Sinhae, Kang, Byeongkeun
This work addresses the task of weakly-supervised object localization. The goal is to learn object localization using only image-level class labels, which are much easier to obtain compared to bounding box annotations. This task is important because it reduces the need for labor-intensive ground-truth annotations. However, methods for object localization trained using weak supervision often suffer from limited accuracy in localization. To address this challenge and enhance localization accuracy, we propose a multiscale object localization transformer (MOLT). It comprises multiple object localization transformers that extract patch embeddings across various scales. Moreover, we introduce a deep clustering-guided refinement method that further enhances localization accuracy by utilizing separately extracted image segments. These segments are obtained by clustering pixels using convolutional neural networks. Finally, we demonstrate the effectiveness of our proposed method by conducting experiments on the publicly available ILSVRC-2012 dataset.