Goto

Collaborating Authors

 Kim, Dae Il


Efficient Online Inference for Bayesian Nonparametric Relational Models

Neural Information Processing Systems

Stochastic block models characterize observed network relationships via latent community memberships. In large social networks, we expect entities to participate in multiple communities, and the number of communities to grow with the network size. We introduce a new model for these phenomena, the hierarchical Dirichlet process relational model, which allows nodes to have mixed membership in an unbounded set of communities. To allow scalable learning, we derive an online stochastic variational inference algorithm. Focusing on assortative models of undirected networks, we also propose an efficient structured mean field variational bound, and online methods for automatically pruning unused communities. Compared to state-of-the-art online learning methods for parametric relational models, we show significantly improved perplexity and link prediction accuracy for sparse networks with tens of thousands of nodes. We also showcase an analysis of LittleSis, a large network of who-knows-who at the heights of business and government.


The Nonparametric Metadata Dependent Relational Model

arXiv.org Machine Learning

We introduce the nonparametric metadata dependent relational (NMDR) model, a Bayesian nonparametric stochastic block model for network data. The NMDR allows the entities associated with each node to have mixed membership in an unbounded collection of latent communities. Learned regression models allow these memberships to depend on, and be predicted from, arbitrary node metadata. We develop efficient MCMC algorithms for learning NMDR models from partially observed node relationships. Retrospective MCMC methods allow our sampler to work directly with the infinite stick-breaking representation of the NMDR, avoiding the need for finite truncations. Our results demonstrate recovery of useful latent communities from real-world social and ecological networks, and the usefulness of metadata in link prediction tasks.