Goto

Collaborating Authors

 Kim, Chanwoo


Learning-based Dynamic Robot-to-Human Handover

arXiv.org Artificial Intelligence

This paper presents a novel learning-based approach to dynamic robot-to-human handover, addressing the challenges of delivering objects to a moving receiver. We hypothesize that dynamic handover, where the robot adjusts to the receiver's movements, results in more efficient and comfortable interaction compared to static handover, where the receiver is assumed to be stationary. To validate this, we developed a nonparametric method for generating continuous handover motion, conditioned on the receiver's movements, and trained the model using a dataset of 1,000 human-to-human handover demonstrations. We integrated preference learning for improved handover effectiveness and applied impedance control to ensure user safety and adaptiveness. The approach was evaluated in both simulation and real-world settings, with user studies demonstrating that dynamic handover significantly reduces handover time and improves user comfort compared to static methods. Videos and demonstrations of our approach are available at https://zerotohero7886.github.io/dyn-r2h-handover .


Leveraging 2D Masked Reconstruction for Domain Adaptation of 3D Pose Estimation

arXiv.org Artificial Intelligence

RGB-based 3D pose estimation methods have been successful with the development of deep learning and the emergence of high-quality 3D pose datasets. However, most existing methods do not operate well for testing images whose distribution is far from that of training data. However, most existing methods do not operate well for testing images whose distribution is far from that of training data. This problem might be alleviated by involving diverse data during training, however it is non-trivial to collect such diverse data with corresponding labels (i.e. 3D pose). In this paper, we introduced an unsupervised domain adaptation framework for 3D pose estimation that utilizes the unlabeled data in addition to labeled data via masked image modeling (MIM) framework. Foreground-centric reconstruction and attention regularization are further proposed to increase the effectiveness of unlabeled data usage. Experiments are conducted on the various datasets in human and hand pose estimation tasks, especially using the cross-domain scenario. We demonstrated the effectiveness of ours by achieving the state-of-the-art accuracy on all datasets.


Physics Informed Distillation for Diffusion Models

arXiv.org Artificial Intelligence

Diffusion models have recently emerged as a potent tool in generative modeling. However, their inherent iterative nature often results in sluggish image generation due to the requirement for multiple model evaluations. Recent progress has unveiled the intrinsic link between diffusion models and Probability Flow Ordinary Differential Equations (ODEs), thus enabling us to conceptualize diffusion models as ODE systems. Simultaneously, Physics Informed Neural Networks (PINNs) have substantiated their effectiveness in solving intricate differential equations through implicit modeling of their solutions. Building upon these foundational insights, we introduce Physics Informed Distillation (PID), which employs a student model to represent the solution of the ODE system corresponding to the teacher diffusion model, akin to the principles employed in PINNs. Through experiments on CIFAR 10 and ImageNet 64x64, we observe that PID achieves performance comparable to recent distillation methods. Notably, it demonstrates predictable trends concerning method-specific hyperparameters and eliminates the need for synthetic dataset generation during the distillation process. Both of which contribute to its easy-to-use nature as a distillation approach for Diffusion Models.


Efficient Shapley Values for Attributing Global Properties of Diffusion Models to Data Group

arXiv.org Artificial Intelligence

As diffusion models are deployed in real-world settings, data attribution is needed to ensure fair acknowledgment for contributors of high-quality training data and to identify sources of harmful content. Previous work focuses on identifying individual training samples important for the generation of a given image. However, instead of focusing on a given generated image, some use cases require understanding global properties of the distribution learned by a diffusion model (e.g., demographic diversity). Furthermore, training data for diffusion models are often contributed in groups rather than separately (e.g., multiple artworks from the same artist). Hence, here we tackle the problem of attributing global properties of diffusion models to groups of training data. Specifically, we develop a method to efficiently estimate Shapley values by leveraging model pruning and fine-tuning. We empirically demonstrate the utility of our method with three use cases: (i) global image quality for a DDPM trained on a CIFAR dataset, (ii) demographic diversity for an LDM trained on CelebA-HQ, and (iii) overall aesthetic quality for a Stable Diffusion model LoRA-finetuned on Post-Impressionist artworks.


Stochastic Amortization: A Unified Approach to Accelerate Feature and Data Attribution

arXiv.org Artificial Intelligence

Many tasks in explainable machine learning, such as data valuation and feature attribution, perform expensive computation for each data point and can be intractable for large datasets. These methods require efficient approximations, and learning a network that directly predicts the desired output, which is commonly known as amortization, is a promising solution. However, training such models with exact labels is often intractable; we therefore explore training with noisy labels and find that this is inexpensive and surprisingly effective. Through theoretical analysis of the label noise and experiments with various models and datasets, we show that this approach significantly accelerates several feature attribution and data valuation methods, often yielding an order of magnitude speedup over existing approaches.


Data-driven grapheme-to-phoneme representations for a lexicon-free text-to-speech

arXiv.org Artificial Intelligence

Grapheme-to-Phoneme (G2P) is an essential first step in any modern, high-quality Text-to-Speech (TTS) system. Most of the current G2P systems rely on carefully hand-crafted lexicons developed by experts. This poses a two-fold problem. Firstly, the lexicons are generated using a fixed phoneme set, usually, ARPABET or IPA, which might not be the most optimal way to represent phonemes for all languages. Secondly, the man-hours required to produce such an expert lexicon are very high. In this paper, we eliminate both of these issues by using recent advances in self-supervised learning to obtain data-driven phoneme representations instead of fixed representations. We compare our lexicon-free approach against strong baselines that utilize a well-crafted lexicon. Furthermore, we show that our data-driven lexicon-free method performs as good or even marginally better than the conventional rule-based or lexicon-based neural G2Ps in terms of Mean Opinion Score (MOS) while using no prior language lexicon or phoneme set, i.e. no linguistic expertise.


Mitigating the Exposure Bias in Sentence-Level Grapheme-to-Phoneme (G2P) Transduction

arXiv.org Artificial Intelligence

Text-to-Text Transfer Transformer (T5) has recently been considered for the Grapheme-to-Phoneme (G2P) transduction. As a follow-up, a tokenizer-free byte-level model based on T5 referred to as ByT5, recently gave promising results on word-level G2P conversion by representing each input character with its corresponding UTF-8 encoding. Although it is generally understood that sentence-level or paragraph-level G2P can improve usability in real-world applications as it is better suited to perform on heteronyms and linking sounds between words, we find that using ByT5 for these scenarios is nontrivial. Since ByT5 operates on the character level, it requires longer decoding steps, which deteriorates the performance due to the exposure bias commonly observed in auto-regressive generation models. This paper shows that the performance of sentence-level and paragraph-level G2P can be improved by mitigating such exposure bias using our proposed loss-based sampling method.


Contrastive Corpus Attribution for Explaining Representations

arXiv.org Artificial Intelligence

Despite the widespread use of unsupervised models, very few methods are designed to explain them. Most explanation methods explain a scalar model output. However, unsupervised models output representation vectors, the elements of which are not good candidates to explain because they lack semantic meaning. To bridge this gap, recent works defined a scalar explanation output: a dot product-based similarity in the representation space to the sample being explained (i.e., an explicand). Although this enabled explanations of unsupervised models, the interpretation of this approach can still be opaque because similarity to the explicand's representation may not be meaningful to humans. To address this, we propose contrastive corpus similarity, a novel and semantically meaningful scalar explanation output based on a reference corpus and a contrasting foil set of samples. We demonstrate that contrastive corpus similarity is compatible with many post-hoc feature attribution methods to generate COntrastive COrpus Attributions (COCOA) and quantitatively verify that features important to the corpus are identified. We showcase the utility of COCOA in two ways: (i) we draw insights by explaining augmentations of the same image in a contrastive learning setting (SimCLR); and (ii) we perform zero-shot object localization by explaining the similarity of image representations to jointly learned text representations (CLIP). Machine learning models based on deep neural networks are increasingly used in a diverse set of tasks including chess (Silver et al., 2018), protein folding (Jumper et al., 2021), and language translation (Jean et al., 2014). The majority of neural networks have many parameters, which impedes humans from understanding them (Lipton, 2018). To address this, many tools have been developed to understand supervised models in terms of their prediction (Lundberg & Lee, 2017; Wachter et al., 2017). In this supervised setting, the model maps features to labels (f: X Y), and explanations aim to understand the model's prediction of a label of interest. These explanations are interpretable, because the label of interest (e.g., mortality, an image class) is meaningful to humans (Figure 1a). In contrast, models trained in unsupervised settings map features to representations (f: X H). Unfortunately, the meaning of individual elements in the representation space is unknown in general.


Learning to Estimate Shapley Values with Vision Transformers

arXiv.org Artificial Intelligence

Transformers have become a default architecture in computer vision, but understanding what drives their predictions remains a challenging problem. Current explanation approaches rely on attention values or input gradients, but these provide a limited view of a model's dependencies. Shapley values offer a theoretically sound alternative, but their computational cost makes them impractical for large, high-dimensional models. In this work, we aim to make Shapley values practical for vision transformers (ViTs). To do so, we first leverage an attention masking approach to evaluate ViTs with partial information, and we then develop a procedure to generate Shapley value explanations via a separate, learned explainer model. Our experiments compare Shapley values to many baseline methods (e.g., attention rollout, GradCAM, LRP), and we find that our approach provides more accurate explanations than existing methods for ViTs. Transformers (Vaswani et al., 2017) were originally introduced for ...


Macro-block dropout for improved regularization in training end-to-end speech recognition models

arXiv.org Artificial Intelligence

This paper proposes a new regularization algorithm referred to as macro-block dropout. The overfitting issue has been a difficult problem in training large neural network models. The dropout technique has proven to be simple yet very effective for regularization by preventing complex co-adaptations during training. In our work, we define a macro-block that contains a large number of units from the input to a Recurrent Neural Network (RNN). Rather than applying dropout to each unit, we apply random dropout to each macro-block. This algorithm has the effect of applying different drop out rates for each layer even if we keep a constant average dropout rate, which has better regularization effects. In our experiments using Recurrent Neural Network-Transducer (RNN-T), this algorithm shows relatively 4.30 % and 6.13 % Word Error Rates (WERs) improvement over the conventional dropout on LibriSpeech test-clean and test-other. With an Attention-based Encoder-Decoder (AED) model, this algorithm shows relatively 4.36 % and 5.85 % WERs improvement over the conventional dropout on the same test sets.