Goto

Collaborating Authors

 Kim, Beomsu


Boost-and-Skip: A Simple Guidance-Free Diffusion for Minority Generation

arXiv.org Machine Learning

Minority samples are underrepresented instances located in low-density regions of a data manifold, and are valuable in many generative AI applications, such as data augmentation, creative content generation, etc. Unfortunately, existing diffusion-based minority generators often rely on computationally expensive guidance dedicated for minority generation. To address this, here we present a simple yet powerful guidance-free approach called Boost-and-Skip for generating minority samples using diffusion models. The key advantage of our framework requires only two minimal changes to standard generative processes: (i) variance-boosted initialization and (ii) timestep skipping. We highlight that these seemingly-trivial modifications are supported by solid theoretical and empirical evidence, thereby effectively promoting emergence of underrepresented minority features. Our comprehensive experiments demonstrate that Boost-and-Skip greatly enhances the capability of generating minority samples, even rivaling guidance-based state-of-the-art approaches while requiring significantly fewer computations.


Latent Schrodinger Bridge: Prompting Latent Diffusion for Fast Unpaired Image-to-Image Translation

arXiv.org Artificial Intelligence

Diffusion models (DMs), which enable both image generation from noise and inversion from data, have inspired powerful unpaired image-to-image (I2I) translation algorithms. However, they often require a larger number of neural function evaluations (NFEs), limiting their practical applicability. In this paper, we tackle this problem with Schrodinger Bridges (SBs), which are stochastic differential equations (SDEs) between distributions with minimal transport cost. We analyze the probability flow ordinary differential equation (ODE) formulation of SBs, and observe that we can decompose its vector field into a linear combination of source predictor, target predictor, and noise predictor. Inspired by this observation, we propose Latent Schrodinger Bridges (LSBs) that approximate the SB ODE via pre-trained Stable Diffusion, and develop appropriate prompt optimization and change of variables formula to match the training and inference between distributions. We demonstrate that our algorithm successfully conduct competitive I2I translation in unsupervised setting with only a fraction of computation cost required by previous DM-based I2I methods.


Simple ReFlow: Improved Techniques for Fast Flow Models

arXiv.org Artificial Intelligence

Diffusion and flow-matching models achieve remarkable generative performance but at the cost of many sampling steps, this slows inference and limits applicability to time-critical tasks. The ReFlow procedure can accelerate sampling by straightening generation trajectories. However, ReFlow is an iterative procedure, typically requiring training on simulated data, and results in reduced sample quality. To mitigate sample deterioration, we examine the design space of ReFlow and highlight potential pitfalls in prior heuristic practices. We then propose seven improvements for training dynamics, learning and inference, which are verified with thorough ablation studies on CIFAR10 $32 \times 32$, AFHQv2 $64 \times 64$, and FFHQ $64 \times 64$. Combining all our techniques, we achieve state-of-the-art FID scores (without / with guidance, resp.) for fast generation via neural ODEs: $2.23$ / $1.98$ on CIFAR10, $2.30$ / $1.91$ on AFHQv2, $2.84$ / $2.67$ on FFHQ, and $3.49$ / $1.74$ on ImageNet-64, all with merely $9$ neural function evaluations.


CUPID: A Real-Time Session-Based Reciprocal Recommendation System for a One-on-One Social Discovery Platform

arXiv.org Artificial Intelligence

This study introduces CUPID, a novel approach to session-based reciprocal recommendation systems designed for a real-time one-on-one social discovery platform. In such platforms, low latency is critical to enhance user experiences. However, conventional session-based approaches struggle with high latency due to the demands of modeling sequential user behavior for each recommendation process. Additionally, given the reciprocal nature of the platform, where users act as items for each other, training recommendation models on large-scale datasets is computationally prohibitive using conventional methods. To address these challenges, CUPID decouples the time-intensive user session modeling from the real-time user matching process to reduce inference time. Furthermore, CUPID employs a two-phase training strategy that separates the training of embedding and prediction layers, significantly reducing the computational burden by decreasing the number of sequential model inferences by several hundredfold. Extensive experiments on large-scale Azar datasets demonstrate CUPID's effectiveness in a real-world production environment. Notably, CUPID reduces response latency by more than 76% compared to non-asynchronous systems, while significantly improving user engagement.


Generalized Consistency Trajectory Models for Image Manipulation

arXiv.org Artificial Intelligence

Diffusion-based generative models excel in unconditional generation, as well as on applied tasks such as image editing and restoration. The success of diffusion models lies in the iterative nature of diffusion: diffusion breaks down the complex process of mapping noise to data into a sequence of simple denoising tasks. Moreover, we are able to exert fine-grained control over the generation process by injecting guidance terms into each denoising step. However, the iterative process is also computationally intensive, often taking from tens up to thousands of function evaluations. Although consistency trajectory models (CTMs) enable traversal between any time points along the probability flow ODE (PFODE) and score inference with a single function evaluation, CTMs only allow translation from Gaussian noise to data. Thus, this work aims to unlock the full potential of CTMs by proposing generalized CTMs (GCTMs), which translate between arbitrary distributions via ODEs. We discuss the design space of GCTMs and demonstrate their efficacy in various image manipulation tasks such as image-to-image translation, restoration, and editing.


Energy-Based Cross Attention for Bayesian Context Update in Text-to-Image Diffusion Models

arXiv.org Artificial Intelligence

Despite the remarkable performance of text-to-image diffusion models in image generation tasks, recent studies have raised the issue that generated images sometimes cannot capture the intended semantic contents of the text prompts, which phenomenon is often called semantic misalignment. To address this, here we present a novel energy-based model (EBM) framework for adaptive context control by modeling the posterior of context vectors. Specifically, we first formulate EBMs of latent image representations and text embeddings in each cross-attention layer of the denoising autoencoder. Then, we obtain the gradient of the log posterior of context vectors, which can be updated and transferred to the subsequent cross-attention layer, thereby implicitly minimizing a nested hierarchy of energy functions. Our latent EBMs further allow zero-shot compositional generation as a linear combination of cross-attention outputs from different contexts. Using extensive experiments, we demonstrate that the proposed method is highly effective in handling various image generation tasks, including multi-concept generation, text-guided image inpainting, and real and synthetic image editing.


Unpaired Image-to-Image Translation via Neural Schr\"odinger Bridge

arXiv.org Machine Learning

Diffusion models are a powerful class of generative models which simulate stochastic differential equations (SDEs) to generate data from noise. Although diffusion models have achieved remarkable progress in recent years, they have limitations in the unpaired image-to-image translation tasks due to the Gaussian prior assumption. Schr\"odinger Bridge (SB), which learns an SDE to translate between two arbitrary distributions, have risen as an attractive solution to this problem. However, none of SB models so far have been successful at unpaired translation between high-resolution images. In this work, we propose the Unpaired Neural Schr\"odinger Bridge (UNSB), which expresses SB problem as a sequence of adversarial learning problems. This allows us to incorporate advanced discriminators and regularization to learn a SB between unpaired data. We demonstrate that UNSB is scalable and successfully solves various unpaired image-to-image translation tasks. Code: \url{https://github.com/cyclomon/UNSB}


Bridging Active Exploration and Uncertainty-Aware Deployment Using Probabilistic Ensemble Neural Network Dynamics

arXiv.org Artificial Intelligence

In recent years, learning-based control in robotics has gained significant attention due to its capability to address complex tasks in real-world environments. With the advances in machine learning algorithms and computational capabilities, this approach is becoming increasingly important for solving challenging control problems in robotics by learning unknown or partially known robot dynamics. Active exploration, in which a robot directs itself to states that yield the highest information gain, is essential for efficient data collection and minimizing human supervision. Similarly, uncertainty-aware deployment has been a growing concern in robotic control, as uncertain actions informed by the learned model can lead to unstable motions or failure. However, active exploration and uncertainty-aware deployment have been studied independently, and there is limited literature that seamlessly integrates them. This paper presents a unified model-based reinforcement learning framework that bridges these two tasks in the robotics control domain. Our framework uses a probabilistic ensemble neural network for dynamics learning, allowing the quantification of epistemic uncertainty via Jensen-Renyi Divergence. The two opposing tasks of exploration and deployment are optimized through state-of-the-art sampling-based MPC, resulting in efficient collection of training data and successful avoidance of uncertain state-action spaces. We conduct experiments on both autonomous vehicles and wheeled robots, showing promising results for both exploration and deployment.


Minimizing Trajectory Curvature of ODE-based Generative Models

arXiv.org Artificial Intelligence

Recent ODE/SDE-based generative models, such as diffusion models, rectified flows, and flow matching, define a generative process as a time reversal of a fixed forward process. Even though these models show impressive performance on large-scale datasets, numerical simulation requires multiple evaluations of a neural network, leading to a slow sampling speed. We attribute the reason to the high curvature of the learned generative trajectories, as it is directly related to the truncation error of a numerical solver. Based on the relationship between the forward process and the curvature, here we present an efficient method of training the forward process to minimize the curvature of generative trajectories without any ODE/SDE simulation. Experiments show that our method achieves a lower curvature than previous models and, therefore, decreased sampling costs while maintaining competitive performance. Code is available at https://github.com/sangyun884/fast-ode.


Understanding and Improving the Exemplar-based Generation for Open-domain Conversation

arXiv.org Artificial Intelligence

Exemplar-based generative models for open-domain conversation produce responses based on the exemplars provided by the retriever, taking advantage of generative models and retrieval models. However, they often ignore the retrieved exemplars while generating responses or produce responses over-fitted to the retrieved exemplars. In this paper, we argue that these drawbacks are derived from the one-to-many problem of the open-domain conversation. When the retrieved exemplar is relevant to the given context yet significantly different from the gold response, the exemplar-based generative models are trained to ignore the exemplar since the exemplar is not helpful for generating the gold response. On the other hand, when the retrieved exemplar is lexically similar to the gold response, the generative models are trained to rely on the exemplar highly. Therefore, we propose a training method selecting exemplars that are semantically relevant to the gold response but lexically distanced from the gold response to mitigate the above disadvantages. In the training phase, our proposed training method first uses the gold response instead of dialogue context as a query to select exemplars that are semantically relevant to the gold response. And then, it eliminates the exemplars that lexically resemble the gold responses to alleviate the dependency of the generative models on that exemplars. The remaining exemplars could be irrelevant to the given context since they are searched depending on the gold response. Thus, our proposed training method further utilizes the relevance scores between the given context and the exemplars to penalize the irrelevant exemplars. Extensive experiments demonstrate that our proposed training method alleviates the drawbacks of the existing exemplar-based generative models and significantly improves the performance in terms of appropriateness and informativeness.