Goto

Collaborating Authors

 Kieslich, Kimon


Envisioning Stakeholder-Action Pairs to Mitigate Negative Impacts of AI: A Participatory Approach to Inform Policy Making

arXiv.org Artificial Intelligence

The potential for negative impacts of AI has rapidly become more pervasive around the world, and this has intensified a need for responsible AI governance. While many regulatory bodies endorse risk-based approaches and a multitude of risk mitigation practices are proposed by companies and academic scholars, these approaches are commonly expert-centered and thus lack the inclusion of a significant group of stakeholders. Ensuring that AI policies align with democratic expectations requires methods that prioritize the voices and needs of those impacted. In this work we develop a participative and forward-looking approach to inform policy-makers and academics that grounds the needs of lay stakeholders at the forefront and enriches the development of risk mitigation strategies. Our approach (1) maps potential mitigation and prevention strategies of negative AI impacts that assign responsibility to various stakeholders, (2) explores the importance and prioritization thereof in the eyes of laypeople, and (3) presents these insights in policy fact sheets, i.e., a digestible format for informing policy processes. We emphasize that this approach is not targeted towards replacing policy-makers; rather our aim is to present an informative method that enriches mitigation strategies and enables a more participatory approach to policy development.


Towards Leveraging News Media to Support Impact Assessment of AI Technologies

arXiv.org Artificial Intelligence

Expert-driven frameworks for impact assessments (IAs) may inadvertently overlook the effects of AI technologies on the public's social behavior, policy, and the cultural and geographical contexts shaping the perception of AI and the impacts around its use. This research explores the potentials of fine-tuning LLMs on negative impacts of AI reported in a diverse sample of articles from 266 news domains spanning 30 countries around the world to incorporate more diversity into IAs. Our findings highlight (1) the potential of fine-tuned open-source LLMs in supporting IA of AI technologies by generating high-quality negative impacts across four qualitative dimensions: coherence, structure, relevance, and plausibility, and (2) the efficacy of small open-source LLM (Mistral-7B) fine-tuned on impacts from news media in capturing a wider range of categories of impacts that GPT-4 had gaps in covering.


Simulating Policy Impacts: Developing a Generative Scenario Writing Method to Evaluate the Perceived Effects of Regulation

arXiv.org Artificial Intelligence

The rapid advancement of AI technologies yields numerous future impacts on individuals and society. Policy-makers are therefore tasked to react quickly and establish policies that mitigate those impacts. However, anticipating the effectiveness of policies is a difficult task, as some impacts might only be observable in the future and respective policies might not be applicable to the future development of AI. In this work we develop a method for using large language models (LLMs) to evaluate the efficacy of a given piece of policy at mitigating specified negative impacts. We do so by using GPT-4 to generate scenarios both pre- and post-introduction of policy and translating these vivid stories into metrics based on human perceptions of impacts. We leverage an already established taxonomy of impacts of generative AI in the media environment to generate a set of scenario pairs both mitigated and non-mitigated by the transparency legislation of Article 50 of the EU AI Act. We then run a user study (n=234) to evaluate these scenarios across four risk-assessment dimensions: severity, plausibility, magnitude, and specificity to vulnerable populations. We find that this transparency legislation is perceived to be effective at mitigating harms in areas such as labor and well-being, but largely ineffective in areas such as social cohesion and security. Through this case study on generative AI harms we demonstrate the efficacy of our method as a tool to iterate on the effectiveness of policy on mitigating various negative impacts. We expect this method to be useful to researchers or other stakeholders who want to brainstorm the potential utility of different pieces of policy or other mitigation strategies.