Kiesel, Scott
Lifelong Multi-Agent Path Finding in Large-Scale Warehouses
Li, Jiaoyang, Tinka, Andrew, Kiesel, Scott, Durham, Joseph W., Kumar, T. K. Satish, Koenig, Sven
Multi-Agent Path Finding (MAPF) is the problem of moving a team of agents to their goal locations without collisions. In this paper, we study the lifelong variant of MAPF where agents are constantly engaged with new goal locations, such as in large-scale warehouses. We propose a new framework for solving lifelong MAPF by decomposing the problem into a sequence of Windowed MAPF instances, where a Windowed MAPF solver resolves collisions among the paths of the agents only within a finite time horizon and ignores collisions beyond it. Our framework is particularly well suited to generating pliable plans that adapt to continually arriving new goal locations. Theoretically, we analyze the advantages and disadvantages of our framework. Empirically, we evaluate our framework with a variety of MAPF solvers and show that it can produce high-quality solutions for up to 1,000 agents, significantly outperforming existing methods.
Non-Classical Planning for Robotic Applications
Kiesel, Scott (University of New Hampshire)
For my dissertation I am focusing on non-classical planning for robotic applications. Much classical planning research relies on assumptions that do not hold in real world robotics applications. In many cases the entire world state is not known in advance and the events that occur in the future can not be known with certainty. Robots operating in the real world also need to be responsive and react to dynamic obstacles and events.
Recursive Best-First Search with Bounded Overhead
Hatem, Matthew (University of New Hampshire) | Kiesel, Scott (University of New Hampshire) | Ruml, Wheeler (University of New Hampshire)
There are two major paradigms for linear-space heuristic search: iterative deepening (IDA*) and recursive best-first search (RBFS). While the node regeneration overhead of IDA* is easily characterized in terms of the heuristic branching factor, the overhead of RBFS depends on how widely the promising nodes are separated in the search tree, and is harder to anticipate. In this paper, we present two simple techniques for improving the performance of RBFS while maintaining its advantages over IDA*. While these techniques work well in practice, they do not provide any theoretical bounds on the amount of regeneration overhead. To this end, we introduce RBFScr, the first method for provably bounding the regeneration overhead of RBFS. We show empirically that this improves its performance in several domains, both for optimal and suboptimal search, and also yields a better linear-space anytime heuristic search. RBFScr is the first linear space best-first search robust enough to solve a variety of domains with varying operator costs.
Integrating Vehicle Routing and Motion Planning
Kiesel, Scott (University of New Hampshire) | Burns, Ethan (University of New Hampshire) | Wilt, Christopher (University of New Hampshire) | Ruml, Wheeler (University of New Hampshire)
There has been much interest recently in problems that com-bine high-level task planning with low-level motion planning.In this paper, we present a problem of this kind that arises inmulti-vehicle mission planning. It tightly integrates task al-location and scheduling, who will do what when, with pathplanning, how each task will actually be performed. It ex-tends classical vehicle routing in that the cost of executing aset of high-level tasks can vary significantly in time and costaccording to the low-level paths selected. It extends classi-cal motion planning in that each path must minimize costwhile also respecting temporal constraints, including thoseimposed by the agent’s other tasks and the tasks assigned toother agents. Furthermore, the problem is a subtask withinan interactive system and therefore must operate within se-vere time constraints. We present an approach to the problembased on a combination of tabu search, linear programming,and heuristic search. We evaluate our planner on represen-tative problem instances and find that its performance meetsthe demanding requirements of our application. These resultsdemonstrate how integrating multiple diverse techniques cansuccessfully solve challenging real-world planning problemsthat are beyond the reach of any single method.