Goto

Collaborating Authors

 Kidwell, Paul


Global Seismic Monitoring: A Bayesian Approach

AAAI Conferences

The automated processing of multiple seismic signals to detect and localize seismic events is a central tool in both geophysics and nuclear treaty verification. This paper reports on a project, begun in 2009, to reformulate this problem in a Bayesian framework. A Bayesian seismic monitoring system, NET-VISA, has been built comprising a spatial event prior and generative models of event transmission and detection, as well as an inference algorithm. Applied in the context of the International Monitoring System (IMS), a global sensor network developed for the Comprehensive Nuclear-Test-Ban Treaty (CTBT), NET-VISA achieves a reduction of around 50% in the number of missed events compared to the currently deployed system. It also finds events that are missed even by the human analysts who post-process the IMS output.


Global seismic monitoring as probabilistic inference

Neural Information Processing Systems

The International Monitoring System (IMS) is a global network of sensors whose purpose is to identify potential violations of the Comprehensive Nuclear-Test-Ban Treaty (CTBT), primarily through detection and localization of seismic events. We report on the first stage of a project to improve on the current automated software system with a Bayesian inference system that computes the most likely global event history given the record of local sensor data. The new system, VISA (Vertically Integrated Seismological Analysis), is based on empirically calibrated, generative models of event occurrence, signal propagation, and signal detection. VISA exhibits significantly improved precision and recall compared to the current operational system and is able to detect events that are missed even by the human analysts who post-process the IMS output.