Goto

Collaborating Authors

 Khurana, Udayan


A Vision for Semantically Enriched Data Science

arXiv.org Artificial Intelligence

The recent efforts in automation of machine learning or data science has achieved success in various tasks such as hyper-parameter optimization or model selection. However, key areas such as utilizing domain knowledge and data semantics are areas where we have seen little automation. Data Scientists have long leveraged common sense reasoning and domain knowledge to understand and enrich data for building predictive models. In this paper we discuss important shortcomings of current data science and machine learning solutions. We then envision how leveraging "semantic" understanding and reasoning on data in combination with novel tools for data science automation can help with consistent and explainable data augmentation and transformation. Additionally, we discuss how semantics can assist data scientists in a new manner by helping with challenges related to trust, bias, and explainability in machine learning. Semantic annotation can also help better explore and organize large data sources.


Semantic Annotation for Tabular Data

arXiv.org Artificial Intelligence

Detecting semantic concept of columns in tabular data is of particular interest to many applications ranging from data integration, cleaning, search to feature engineering and model building in machine learning. Recently, several works have proposed supervised learning-based or heuristic pattern-based approaches to semantic type annotation. Both have shortcomings that prevent them from generalizing over a large number of concepts or examples. Many neural network based methods also present scalability issues. Additionally, none of the known methods works well for numerical data. We propose $C^2$, a column to concept mapper that is based on a maximum likelihood estimation approach through ensembles. It is able to effectively utilize vast amounts of, albeit somewhat noisy, openly available table corpora in addition to two popular knowledge graphs to perform effective and efficient concept prediction for structured data. We demonstrate the effectiveness of $C^2$ over available techniques on 9 datasets, the most comprehensive comparison on this topic so far.


Automating Predictive Modeling Process using Reinforcement Learning

arXiv.org Artificial Intelligence

Building a good predictive model requires an array of activities such as data imputation, feature transformations, estimator selection, hyper-parameter search and ensemble construction. Given the large, complex and heterogenous space of options, off-the-shelf optimization methods are infeasible for realistic response times. In practice, much of the predictive modeling process is conducted by experienced data scientists, who selectively make use of available tools. Over time, they develop an understanding of the behavior of operators, and perform serial decision making under uncertainty, colloquially referred to as educated guesswork. With an unprecedented demand for application of supervised machine learning, there is a call for solutions that automatically search for a good combination of parameters across these tasks to minimize the modeling error. We introduce a novel system called APRL (Autonomous Predictive modeler via Reinforcement Learning), that uses past experience through reinforcement learning to optimize such sequential decision making from within a set of diverse actions under a time constraint on a previously unseen predictive learning problem. APRL actions are taken to optimize the performance of a final ensemble. This is in contrast to other systems, which maximize individual model accuracy first and create ensembles as a disconnected post-processing step. As a result, APRL is able to reduce up to 71\% of classification error on average over a wide variety of problems.


Dataset Evolver: An Interactive Feature Engineering Notebook

AAAI Conferences

We present DATASET EVOLVER, an interactive Jupyter notebook-based tool to support data scientists perform feature engineering for classification tasks. It provides users with suggestions on new features to construct, based on automated feature engineering algorithms. Users can navigate the given choices in different ways, validate the impact, and selectively accept the suggestions. DATASET EVOLVER is a pluggable feature engineering framework where several exploration strategies could be added. It currently includes meta-learning based exploration and reinforcement learning based exploration. The suggested features are constructed using well-defined mathematical functions and are easily interpretable. Our system provides a mixed-initiative system of a user being assisted by an automated agent to efficiently and effectively solve the complex problem of feature engineering. It reduces the effort of a data scientist from hours to minutes.


Feature Engineering for Predictive Modeling Using Reinforcement Learning

AAAI Conferences

Feature engineering is a crucial step in the process of predictive modeling. It involves the transformation of given feature space, typically using mathematical functions, with the objective of reducing the modeling error for a given target. However, there is no well-defined basis for performing effective feature engineering. It involves domain knowledge, intuition, and most of all, a lengthy process of trial and error. The human attention involved in overseeing this process significantly influences the cost of model generation. We present a new framework to automate feature engineering. It is based on performance driven exploration of a transformation graph, which systematically and compactly captures the space of given options. A highly efficient exploration strategy is derived through reinforcement learning on past examples.


Feature Engineering for Predictive Modeling using Reinforcement Learning

arXiv.org Machine Learning

Feature engineering is a crucial step in the process of predictive modeling. It involves the transformation of given feature space, typically using mathematical functions, with the objective of reducing the modeling error for a given target. However, there is no well-defined basis for performing effective feature engineering. It involves domain knowledge, intuition, and most of all, a lengthy process of trial and error. The human attention involved in overseeing this process significantly influences the cost of model generation. We present a new framework to automate feature engineering. It is based on performance driven exploration of a transformation graph, which systematically and compactly enumerates the space of given options. A highly efficient exploration strategy is derived through reinforcement learning on past examples.