Goto

Collaborating Authors

 Khosla, Savya


MAGNET: Augmenting Generative Decoders with Representation Learning and Infilling Capabilities

arXiv.org Artificial Intelligence

While originally designed for unidirectional generative modeling, decoder-only large language models (LLMs) are increasingly being adapted for bidirectional modeling. However, unidirectional and bidirectional models are typically trained separately with distinct objectives (generation and representation learning, respectively). This separation overlooks the opportunity for developing a more versatile language model and for these objectives to complement each other. In this work, we introduce MAGNET, an adaptation of decoder-only LLMs that enhances their ability to generate robust representations and infill missing text spans, while preserving their knowledge and text generation capabilities. MAGNET employs three self-supervised training objectives and introduces an attention mechanism that combines bidirectional and causal attention, enabling unified training across all objectives. Our results demonstrate that LLMs adapted with MAGNET (1) surpass strong text encoders on token-level and sentence-level representation learning tasks, (2) generate contextually appropriate text infills by leveraging future context, (3) retain the ability for open-ended text generation without exhibiting repetition problem, and (4) preserve the knowledge gained by the LLM during pretraining.


Unified-IO 2: Scaling Autoregressive Multimodal Models with Vision, Language, Audio, and Action

arXiv.org Artificial Intelligence

We present Unified-IO 2, the first autoregressive multimodal model that is capable of understanding and generating image, text, audio, and action. To unify different modalities, we tokenize inputs and outputs -- images, text, audio, action, bounding boxes, etc., into a shared semantic space and then process them with a single encoder-decoder transformer model. Since training with such diverse modalities is challenging, we propose various architectural improvements to stabilize model training. We train our model from scratch on a large multimodal pre-training corpus from diverse sources with a multimodal mixture of denoisers objective. To learn an expansive set of skills, such as following multimodal instructions, we construct and finetune on an ensemble of 120 datasets with prompts and augmentations. With a single unified model, Unified-IO 2 achieves state-of-the-art performance on the GRIT benchmark and strong results in more than 35 benchmarks, including image generation and understanding, natural language understanding, video and audio understanding, and robotic manipulation. We release all our models to the research community.


Survey on Memory-Augmented Neural Networks: Cognitive Insights to AI Applications

arXiv.org Artificial Intelligence

This paper explores Memory-Augmented Neural Networks (MANNs), delving into how they blend human-like memory processes into AI. It covers different memory types, like sensory, short-term, and long-term memory, linking psychological theories with AI applications. The study investigates advanced architectures such as Hopfield Networks, Neural Turing Machines, Correlation Matrix Memories, Memformer, and Neural Attention Memory, explaining how they work and where they excel. It dives into real-world uses of MANNs across Natural Language Processing, Computer Vision, Multimodal Learning, and Retrieval Models, showing how memory boosters enhance accuracy, efficiency, and reliability in AI tasks. Overall, this survey provides a comprehensive view of MANNs, offering insights for future research in memory-based AI systems.


Neural Active Learning on Heteroskedastic Distributions

arXiv.org Artificial Intelligence

Models that can actively seek out the best quality training data hold the promise of more accurate, adaptable, and efficient machine learning. Active learning techniques often tend to prefer examples that are the most difficult to classify. While this works well on homogeneous datasets, we find that it can lead to catastrophic failures when performed on multiple distributions with different degrees of label noise or heteroskedasticity. These active learning algorithms strongly prefer to draw from the distribution with more noise, even if their examples have no informative structure (such as solid color images with random labels). To this end, we demonstrate the catastrophic failure of these active learning algorithms on heteroskedastic distributions and propose a fine-tuning-based approach to mitigate these failures. Further, we propose a new algorithm that incorporates a model difference scoring function for each data point to filter out the noisy examples and sample clean examples that maximize accuracy, outperforming the existing active learning techniques on the heteroskedastic datasets. We hope these observations and techniques are immediately helpful to practitioners and can help to challenge common assumptions in the design of active learning algorithms.