Goto

Collaborating Authors

 Khodadadi, Ali


ChOracle: A Unified Statistical Framework for Churn Prediction

arXiv.org Machine Learning

User churn is an important issue in online services that threatens the health and profitability of services. Most of the previous works on churn prediction convert the problem into a binary classification task where the users are labeled as churned and non-churned. More recently, some works have tried to convert the user churn prediction problem into the prediction of user return time. In this approach which is more realistic in real world online services, at each time-step the model predicts the user return time instead of predicting a churn label. However, the previous works in this category suffer from lack of generality and require high computational complexity. In this paper, we introduce \emph{ChOracle}, an oracle that predicts the user churn by modeling the user return times to service by utilizing a combination of Temporal Point Processes and Recurrent Neural Networks. Moreover, we incorporate latent variables into the proposed recurrent neural network to model the latent user loyalty to the system. We also develop an efficient approximate variational algorithm for learning parameters of the proposed RNN by using back propagation through time. Finally, we demonstrate the superior performance of ChOracle on a wide variety of real world datasets.


Recurrent Poisson Factorization for Temporal Recommendation

arXiv.org Machine Learning

Poisson factorization is a probabilistic model of users and items for recommendation systems, where the so-called implicit consumer data is modeled by a factorized Poisson distribution. There are many variants of Poisson factorization methods who show state-of-the-art performance on real-world recommendation tasks. However, most of them do not explicitly take into account the temporal behavior and the recurrent activities of users which is essential to recommend the right item to the right user at the right time. In this paper, we introduce Recurrent Poisson Factorization (RPF) framework that generalizes the classical PF methods by utilizing a Poisson process for modeling the implicit feedback. RPF treats time as a natural constituent of the model and brings to the table a rich family of time-sensitive factorization models. To elaborate, we instantiate several variants of RPF who are capable of handling dynamic user preferences and item specification (DRPF), modeling the social-aspect of product adoption (SRPF), and capturing the consumption heterogeneity among users and items (HRPF). We also develop a variational algorithm for approximate posterior inference that scales up to massive data sets. Furthermore, we demonstrate RPF's superior performance over many state-of-the-art methods on synthetic dataset, and large scale real-world datasets on music streaming logs, and user-item interactions in M-Commerce platforms.


Correlated Cascades: Compete or Cooperate

AAAI Conferences

In real world social networks, there are multiple cascades which are rarely independent. They usually compete or cooperate with each other. Motivated by the reinforcement theory in sociology we leverage the fact that adoption of a user to any behavior is modeled by the aggregation of behaviors of its neighbors. We use a multidimensional marked Hawkes process to model users product adoption and consequently spread of cascades in social networks. The resulting inference problem is proved to be convex and is solved in parallel by using the barrier method. The advantage of the proposed model is twofold; it models correlated cascades and also learns the latent diffusion network. Experimental results on synthetic and two real datasets gathered from Twitter, URL shortening and music streaming services, illustrate the superior performance of the proposed model over the alternatives.


HNP3: A Hierarchical Nonparametric Point Process for Modeling Content Diffusion over Social Media

arXiv.org Machine Learning

This paper introduces a novel framework for modeling temporal events with complex longitudinal dependency that are generated by dependent sources. This framework takes advantage of multidimensional point processes for modeling time of events. The intensity function of the proposed process is a mixture of intensities, and its complexity grows with the complexity of temporal patterns of data. Moreover, it utilizes a hierarchical dependent nonparametric approach to model marks of events. These capabilities allow the proposed model to adapt its temporal and topical complexity according to the complexity of data, which makes it a suitable candidate for real world scenarios. An online inference algorithm is also proposed that makes the framework applicable to a vast range of applications. The framework is applied to a real world application, modeling the diffusion of contents over networks. Extensive experiments reveal the effectiveness of the proposed framework in comparison with state-of-the-art methods.