Khatri, Chandra
Chitranuvad: Adapting Multi-Lingual LLMs for Multimodal Translation
Khan, Shaharukh, Tarun, Ayush, Faraz, Ali, Kamble, Palash, Dahiya, Vivek, Pokala, Praveen, Kulkarni, Ashish, Khatri, Chandra, Ravi, Abhinav, Agarwal, Shubham
In this work, we provide the system description of our submission as part of the English to Lowres Multimodal Translation Task at the Workshop on Asian Translation (WAT2024). We introduce Chitranuvad, a multimodal model that effectively integrates Multilingual LLM and a vision module for Multimodal Translation. Our method uses a ViT image encoder to extract visual representations as visual token embeddings which are projected to the LLM space by an adapter layer and generates translation in an autoregressive fashion. We participated in all the three tracks (Image Captioning, Text only and Multimodal translation tasks) for Indic languages (ie. English translation to Hindi, Bengali and Malyalam) and achieved SOTA results for Hindi in all of them on the Challenge set while remaining competitive for the other languages in the shared task.
Chitrarth: Bridging Vision and Language for a Billion People
Khan, Shaharukh, Tarun, Ayush, Ravi, Abhinav, Faraz, Ali, Patidar, Akshat, Pokala, Praveen Kumar, Bhangare, Anagha, Kolla, Raja, Khatri, Chandra, Agarwal, Shubham
Recent multimodal foundation models are primarily trained on English or high resource European language data, which hinders their applicability to other medium and low-resource languages. To address this limitation, we introduce Chitrarth (Chitra: Image; Artha: Meaning), an inclusive Vision-Language Model (VLM), specifically targeting the rich linguistic diversity and visual reasoning across 10 prominent Indian languages. Our model effectively integrates a state-of-the-art (SOTA) multilingual Large Language Model (LLM) with a vision module, primarily trained on multilingual image-text data. Furthermore, we also introduce BharatBench, a comprehensive framework for evaluating VLMs across various Indian languages, ultimately contributing to more diverse and effective AI systems. Our model achieves SOTA results for benchmarks across low resource languages while retaining its efficiency in English. Through our research, we aim to set new benchmarks in multilingual-multimodal capabilities, offering substantial improvements over existing models and establishing a foundation to facilitate future advancements in this arena.
Krutrim LLM: Multilingual Foundational Model for over a Billion People
Kallappa, Aditya, Kamble, Palash, Ravi, Abhinav, Patidar, Akshat, Dhruv, Vinayak, Kumar, Deepak, Awasthi, Raghav, Manjunath, Arveti, Agarwal, Shubham, Ashish, Kumar, Bhargava, Gautam, Khatri, Chandra
India is a diverse society with unique challenges in developing AI systems, including linguistic diversity, oral traditions, data accessibility, and scalability. Existing foundation models are primarily trained on English, limiting their effectiveness for India's population. Indic languages comprise only 1 percent of Common Crawl corpora despite India representing 18 percent of the global population, leading to linguistic biases. Thousands of regional languages, dialects, and code mixing create additional representation challenges due to sparse training data. We introduce Krutrim LLM, a 2 trillion token multilingual model designed for India's linguistic landscape. It incorporates the largest known Indic dataset, mitigating data scarcity and ensuring balanced performance across dialects. Krutrim outperforms or matches state-of-the-art models on Indic benchmarks while maintaining competitive English performance. Despite being significantly smaller in training flops, Krutrim LLM matches or exceeds models like LLAMA-2 on 10 out of 16 tasks, with an average score of 0.57 versus 0.55. This evidences Krutrim's flexible multilingual fluency across diverse linguistic contexts. Krutrim is integrated with real-time search to improve factual accuracy in conversational AI applications. This enhances accessibility for over 1 billion users worldwide. Through intentional design choices addressing data imbalances, Krutrim LLM signifies meaningful progress in building ethical, globally representative AI models.
Towards Automatic Evaluation of Task-Oriented Dialogue Flows
Mirtaheri, Mehrnoosh, Varghese, Nikhil, Khatri, Chandra, Kelkar, Amol
Task-oriented dialogue systems rely on predefined conversation schemes (dialogue flows) often represented as directed acyclic graphs. These flows can be manually designed or automatically generated from previously recorded conversations. Due to variations in domain expertise or reliance on different sets of prior conversations, these dialogue flows can manifest in significantly different graph structures. Despite their importance, there is no standard method for evaluating the quality of dialogue flows. We introduce FuDGE (Fuzzy Dialogue-Graph Edit Distance), a novel metric that evaluates dialogue flows by assessing their structural complexity and representational coverage of the conversation data. FuDGE measures how well individual conversations align with a flow and, consequently, how well a set of conversations is represented by the flow overall. Through extensive experiments on manually configured flows and flows generated by automated techniques, we demonstrate the effectiveness of FuDGE and its evaluation framework. By standardizing and optimizing dialogue flows, FuDGE enables conversational designers and automated techniques to achieve higher levels of efficiency and automation.
KULCQ: An Unsupervised Keyword-based Utterance Level Clustering Quality Metric
Guruprasad, Pranav, Mokhberian, Negar, Varghese, Nikhil, Khatri, Chandra, Kelkar, Amol
Intent discovery is crucial for both building new conversational agents and improving existing ones. While several approaches have been proposed for intent discovery, most rely on clustering to group similar utterances together. Traditional evaluation of these utterance clusters requires intent labels for each utterance, limiting scalability. Although some clustering quality metrics exist that do not require labeled data, they focus solely on cluster geometry while ignoring the linguistic nuances present in conversational transcripts. In this paper, we introduce Keyword-based Utterance Level Clustering Quality (KULCQ), an unsupervised metric that leverages keyword analysis to evaluate clustering quality. We demonstrate KULCQ's effectiveness by comparing it with existing unsupervised clustering metrics and validate its performance through comprehensive ablation studies. Our results show that KULCQ better captures semantic relationships in conversational data while maintaining consistency with geometric clustering principles.
Towards Coherent and Engaging Spoken Dialog Response Generation Using Automatic Conversation Evaluators
Yi, Sanghyun, Goel, Rahul, Khatri, Chandra, Chung, Tagyoung, Hedayatnia, Behnam, Venkatesh, Anu, Gabriel, Raefer, Hakkani-Tur, Dilek
Encoder-decoder based neural architectures serve as the basis of state-of-the-art approaches in end-to-end open domain dialog systems. Since most of such systems are trained with a maximum likelihood(MLE) objective they suffer from issues such as lack of generalizability and the generic response problem, i.e., a system response that can be an answer to a large number of user utterances, e.g., "Maybe, I don't know." Having explicit feedback on the relevance and interestingness of a system response at each turn can be a useful signal for mitigating such issues and improving system quality by selecting responses from different approaches. Towards this goal, we present a system that evaluates chatbot responses at each dialog turn for coherence and engagement. Our system provides explicit turn-level dialog quality feedback, which we show to be highly correlated with human evaluation. To show that incorporating this feedback in the neural response generation models improves dialog quality, we present two different and complementary mechanisms to incorporate explicit feedback into a neural response generation model: reranking and direct modification of the loss function during training. Our studies show that a response generation model that incorporates these combined feedback mechanisms produce more engaging and coherent responses in an open-domain spoken dialog setting, significantly improving the response quality using both automatic and human evaluation.
Advancing the State of the Art in Open Domain Dialog Systems through the Alexa Prize
Khatri, Chandra, Hedayatnia, Behnam, Venkatesh, Anu, Nunn, Jeff, Pan, Yi, Liu, Qing, Song, Han, Gottardi, Anna, Kwatra, Sanjeev, Pancholi, Sanju, Cheng, Ming, Chen, Qinglang, Stubel, Lauren, Gopalakrishnan, Karthik, Bland, Kate, Gabriel, Raefer, Mandal, Arindam, Hakkani-Tur, Dilek, Hwang, Gene, Michel, Nate, King, Eric, Prasad, Rohit
Building open domain conversational systems that allow users to have engaging conversations on topics of their choice is a challenging task. Alexa Prize was launched in 2016 to tackle the problem of achieving natural, sustained, coherent and engaging open-domain dialogs. In the second iteration of the competition in 2018, university teams advanced the state of the art by using context in dialog models, leveraging knowledge graphs for language understanding, handling complex utterances, building statistical and hierarchical dialog managers, and leveraging model-driven signals from user responses. The 2018 competition also included the provision of a suite of tools and models to the competitors including the CoBot (conversational bot) toolkit, topic and dialog act detection models, conversation evaluators, and a sensitive content detection model so that the competing teams could focus on building knowledge-rich, coherent and engaging multi-turn dialog systems. This paper outlines the advances developed by the university teams as well as the Alexa Prize team to achieve the common goal of advancing the science of Conversational AI. We address several key open-ended problems such as conversational speech recognition, open domain natural language understanding, commonsense reasoning, statistical dialog management and dialog evaluation. These collaborative efforts have driven improved experiences by Alexa users to an average rating of 3.61, median duration of 2 mins 18 seconds, and average turns to 14.6, increases of 14%, 92%, 54% respectively since the launch of the 2018 competition. For conversational speech recognition, we have improved our relative Word Error Rate by 55% and our relative Entity Error Rate by 34% since the launch of the Alexa Prize. Socialbots improved in quality significantly more rapidly in 2018, in part due to the release of the CoBot toolkit, with new entrants attaining an average rating of 3.35 just 1 week into the semifinals, compared to 9 weeks in the 2017 competition.
On Evaluating and Comparing Open Domain Dialog Systems
Venkatesh, Anu, Khatri, Chandra, Ram, Ashwin, Guo, Fenfei, Gabriel, Raefer, Nagar, Ashish, Prasad, Rohit, Cheng, Ming, Hedayatnia, Behnam, Metallinou, Angeliki, Goel, Rahul, Yang, Shaohua, Raju, Anirudh
Conversational agents are exploding in popularity. However, much work remains in the area of non goal-oriented conversations, despite significant growth in research interest over recent years. To advance the state of the art in conversational AI, Amazon launched the Alexa Prize, a 2.5-million dollar university competition where sixteen selected university teams built conversational agents to deliver the best social conversational experience. Alexa Prize provided the academic community with the unique opportunity to perform research with a live system used by millions of users. The subjectivity associated with evaluating conversations is key element underlying the challenge of building non-goal oriented dialogue systems. In this paper, we propose a comprehensive evaluation strategy with multiple metrics designed to reduce subjectivity by selecting metrics which correlate well with human judgement. The proposed metrics provide granular analysis of the conversational agents, which is not captured in human ratings. We show that these metrics can be used as a reasonable proxy for human judgment. We provide a mechanism to unify the metrics for selecting the top performing agents, which has also been applied throughout the Alexa Prize competition. To our knowledge, to date it is the largest setting for evaluating agents with millions of conversations and hundreds of thousands of ratings from users. We believe that this work is a step towards an automatic evaluation process for conversational AIs.
Alexa Prize — State of the Art in Conversational AI
Khatri, Chandra (Amazon) | Venkatesh, Anu (Amazon Alexa) | Hedayatnia, Behnam (Amazon Alexa) | Gabriel, Raefer (Amazon Alexa) | Ram, Ashwin (Google Cloud) | Prasad, Rohit (Amazon Alexa)
Eighteen teams were selected for the inaugural competition last year. To build their socialbots, the students combined state-of-the-art techniques with their own novel strategies in the areas of natural language understanding and conversational AI. This article reports on the research conducted over the 2017-2018 year. While the 20-minute grand challenge was not achieved in the first year, the competition produced several conversational agents that advanced the state of the art, that are interesting for everyday users to interact with, and that help form a baseline for the second year of the competition. We conclude with a summary of the human conversation have applicability in both work that we plan to address in the second year of professional and everyday domains. The first generation of such assistants -- Amazon's Alexa, Apple's Siri, Google The Alexa Prize competition received hundreds of Assistant, and Microsoft's Cortana -- have been applications from interested universities. After a focused on short, task-oriented interactions, such as detailed review of the applications, Amazon playing music or answering simple questions, as announced 12 sponsored and 6 unsponsored teams opposed to the longer free-form conversations that as the inaugural cohort for the Alexa Prize. The teams occur naturally in social and professional human that went live for the 2017 competition, listed alphabetically interaction. Conversational AI is the study of techniques by university, were DeisBot (Brandeis University), for creating software agents that can engage Magnus (Carnegie Mellon University), in natural conversational interactions with humans.