Goto

Collaborating Authors

 Khaniki, Mohammad Ali Labbaf


An Advanced NLP Framework for Automated Medical Diagnosis with DeBERTa and Dynamic Contextual Positional Gating

arXiv.org Artificial Intelligence

This paper presents a novel Natural Language Processing (NLP) framework for enhancing medical diagnosis through the integration of advanced techniques in data augmentation, feature extraction, and classification. The proposed approach employs back-translation to generate diverse paraphrased datasets, improving robustness and mitigating overfitting in classification tasks. Leveraging Decoding-enhanced BERT with Disentangled Attention (DeBERTa) with Dynamic Contextual Positional Gating (DCPG), the model captures fine-grained contextual and positional relationships, dynamically adjusting the influence of positional information based on semantic context to produce high-quality text embeddings. For classification, an Attention-Based Feedforward Neural Network (ABFNN) is utilized, effectively focusing on the most relevant features to improve decision-making accuracy. Applied to the classification of symptoms, clinical notes, and other medical texts, this architecture demonstrates its ability to address the complexities of medical data. The combination of data augmentation, contextual embedding generation, and advanced classification mechanisms offers a robust and accurate diagnostic tool, with potential applications in automated medical diagnosis and clinical decision support. This method demonstrates the effectiveness of the proposed NLP framework for medical diagnosis, achieving remarkable results with an accuracy of 99.78%, recall of 99.72%, precision of 99.79%, and an F1-score of 99.75%. These metrics not only underscore the model's robust performance in classifying medical texts with exceptional precision and reliability but also highlight its superiority over existing methods, making it a highly promising tool for automated diagnostic systems.


A Novel Approach to Chest X-ray Lung Segmentation Using U-net and Modified Convolutional Block Attention Module

arXiv.org Artificial Intelligence

Lung segmentation in chest X-ray images is of paramount importance as it plays a crucial role in the diagnosis and treatment of various lung diseases. This paper presents a novel approach for lung segmentation in chest X-ray images by integrating U-net with attention mechanisms. The proposed method enhances the U-net architecture by incorporating a Convolutional Block Attention Module (CBAM), which unifies three distinct attention mechanisms: channel attention, spatial attention, and pixel attention. The channel attention mechanism enables the model to concentrate on the most informative features across various channels. The spatial attention mechanism enhances the model's precision in localization by focusing on significant spatial locations. Lastly, the pixel attention mechanism empowers the model to focus on individual pixels, further refining the model's focus and thereby improving the accuracy of segmentation. The adoption of the proposed CBAM in conjunction with the U-net architecture marks a significant advancement in the field of medical imaging, with potential implications for improving diagnostic precision and patient outcomes. The efficacy of this method is validated against contemporary state-of-the-art techniques, showcasing its superiority in segmentation performance.


Enhancing Price Prediction in Cryptocurrency Using Transformer Neural Network and Technical Indicators

arXiv.org Artificial Intelligence

Abstract: This study presents an innovative approach for predicting cryptocurrency time series, specifically focusing on Bitcoin, Ethereum, and Litecoin. The methodology integrates the use of technical indicators, a Performer neural network, and BiLSTM (Bidirectional Long Short-Term Memory) to capture temporal dynamics and extract significant features from raw cryptocurrency data. The Performer neural network, employing Fast Attention Via positive Orthogonal Random features (FAVOR+), has demonstrated superior computational efficiency and scalability compared to the traditional Multi-head attention mechanism in Transformer models. Additionally, the integration of BiLSTM in the feedforward network enhances the model's capacity to capture temporal dynamics in the data, processing it in both forward and backward directions. This is particularly advantageous for time series data where past and future data points can influence the current state. The proposed method has been applied to the hourly and daily timeframes of the major cryptocurrencies and its performance has been benchmarked against other methods documented in the literature. The results underscore the potential of the proposed method to outperform existing models, marking a significant progression in the field of cryptocurrency price prediction. Keywords: Cryptocurrency, Deep Learning, Time Series prediction, Transformer, Performer, Attention Mechanism, 1) Introduction In the rapidly evolving landscape of technology, the mode of transactions has undergone a significant paradigm shift. Traditional physical payments, such as cash and cheques, are increasingly being replaced by digital transactions. This transformation has been largely driven by the advent and proliferation of cryptocurrencies, which have emerged as a new asset class and medium of exchange (Aghashahi and Bamdad, 2023).