Goto

Collaborating Authors

 Khandelwal, Vedant


NeuroLit Navigator: A Neurosymbolic Approach to Scholarly Article Searches for Systematic Reviews

arXiv.org Artificial Intelligence

The introduction of Large Language Models (LLMs) has significantly impacted various fields, including education, for example, by enabling the creation of personalized learning materials. However, their use in Systematic Reviews (SRs) reveals limitations such as restricted access to specialized vocabularies, lack of domain-specific reasoning, and a tendency to generate inaccurate information. Existing SR tools often rely on traditional NLP methods and fail to address these issues adequately. To overcome these challenges, we developed the ``NeuroLit Navigator,'' a system that combines domain-specific LLMs with structured knowledge sources like Medical Subject Headings (MeSH) and the Unified Medical Language System (UMLS). This integration enhances query formulation, expands search vocabularies, and deepens search scopes, enabling more precise searches. Deployed in multiple universities and tested by over a dozen librarians, the NeuroLit Navigator has reduced the time required for initial literature searches by 90\%. Despite this efficiency, the initial set of articles retrieved can vary in relevance and quality. Nonetheless, the system has greatly improved the reproducibility of search results, demonstrating its potential to support librarians in the SR process.


A Neurosymbolic Fast and Slow Architecture for Graph Coloring

arXiv.org Artificial Intelligence

Constraint Satisfaction Problems (CSPs) present significant challenges to artificial intelligence due to their intricate constraints and the necessity for precise solutions. Existing symbolic solvers are often slow, and prior research has shown that Large Language Models (LLMs) alone struggle with CSPs because of their complexity. To bridge this gap, we build upon the existing SOFAI architecture (or SOFAI-v1), which adapts Daniel Kahneman's ''Thinking, Fast and Slow'' cognitive model to AI. Our enhanced architecture, SOFAI-v2, integrates refined metacognitive governance mechanisms to improve adaptability across complex domains, specifically tailored for solving CSPs like graph coloring. SOFAI-v2 combines a fast System 1 (S1) based on LLMs with a deliberative System 2 (S2) governed by a metacognition module. S1's initial solutions, often limited by non-adherence to constraints, are enhanced through metacognitive governance, which provides targeted feedback and examples to adapt S1 to CSP requirements. If S1 fails to solve the problem, metacognition strategically invokes S2, ensuring accurate and reliable solutions. With empirical results, we show that SOFAI-v2 for graph coloring problems achieves a 16.98% increased success rate and is 32.42% faster than symbolic solvers.


PDDLFuse: A Tool for Generating Diverse Planning Domains

arXiv.org Artificial Intelligence

Various real-world challenges require planning algorithms that can adapt to a broad range of domains. Traditionally, the creation of planning domains has relied heavily on human implementation, which limits the scale and diversity of available domains. While recent advancements have leveraged generative AI technologies such as large language models (LLMs) for domain creation, these efforts have predominantly focused on translating existing domains from natural language descriptions rather than generating novel ones. In contrast, the concept of domain randomization, which has been highly effective in reinforcement learning, enhances performance and generalizability by training on a diverse array of randomized new domains. Inspired by this success, our tool, PDDLFuse, aims to bridge this gap in Planning Domain Definition Language (PDDL). PDDLFuse is designed to generate new, diverse planning domains that can be used to validate new planners or test foundational planning models. We have developed methods to adjust the domain generators parameters to modulate the difficulty of the domains it generates. This adaptability is crucial as existing domain-independent planners often struggle with more complex problems. Initial tests indicate that PDDLFuse efficiently creates intricate and varied domains, representing a significant advancement over traditional domain generation methods and making a contribution towards planning research.


A Domain-Agnostic Neurosymbolic Approach for Big Social Data Analysis: Evaluating Mental Health Sentiment on Social Media during COVID-19

arXiv.org Artificial Intelligence

Monitoring public sentiment via social media is potentially helpful during health crises such as the COVID-19 pandemic. However, traditional frequency-based, data-driven neural network-based approaches can miss newly relevant content due to the evolving nature of language in a dynamically evolving environment. Human-curated symbolic knowledge sources, such as lexicons for standard language and slang terms, can potentially elevate social media signals in evolving language. We introduce a neurosymbolic method that integrates neural networks with symbolic knowledge sources, enhancing the detection and interpretation of mental health-related tweets relevant to COVID-19. Our method was evaluated using a corpus of large datasets (approximately 12 billion tweets, 2.5 million subreddit data, and 700k news articles) and multiple knowledge graphs. This method dynamically adapts to evolving language, outperforming purely data-driven models with an F1 score exceeding 92\%. This approach also showed faster adaptation to new data and lower computational demands than fine-tuning pre-trained large language models (LLMs). This study demonstrates the benefit of neurosymbolic methods in interpreting text in a dynamic environment for tasks such as health surveillance.


Towards Learning Foundation Models for Heuristic Functions to Solve Pathfinding Problems

arXiv.org Artificial Intelligence

Pathfinding problems are found throughout robotics, computational science, and natural sciences. Traditional methods to solve these require training deep neural networks (DNNs) for each new problem domain, consuming substantial time and resources. This study introduces a novel foundation model, leveraging deep reinforcement learning to train heuristic functions that seamlessly adapt to new domains without further fine-tuning. Building upon DeepCubeA, we enhance the model by providing the heuristic function with the domain's state transition information, improving its adaptability. Utilizing a puzzle generator for the 15-puzzle action space variation domains, we demonstrate our model's ability to generalize and solve unseen domains. We achieve a strong correlation between learned and ground truth heuristic values across various domains, as evidenced by robust R-squared and Concordance Correlation Coefficient metrics. These results underscore the potential of foundation models to establish new standards in efficiency and adaptability for AI-driven solutions in complex pathfinding problems.


Trust and ethical considerations in a multi-modal, explainable AI-driven chatbot tutoring system: The case of collaboratively solving Rubik's Cube

arXiv.org Artificial Intelligence

Artificial intelligence (AI) has the potential to transform education with its power of uncovering insights from massive data about student learning patterns. However, ethical and trustworthy concerns of AI have been raised but are unsolved. Prominent ethical issues in high school AI education include data privacy, information leakage, abusive language, and fairness. This paper describes technological components that were built to address ethical and trustworthy concerns in a multi-modal collaborative platform (called ALLURE chatbot) for high school students to collaborate with AI to solve the Rubik's cube. In data privacy, we want to ensure that the informed consent of children, parents, and teachers, is at the center of any data that is managed. Since children are involved, language, whether textual, audio, or visual, is acceptable both from users and AI and the system can steer interaction away from dangerous situations. In information management, we also want to ensure that the system, while learning to improve over time, does not leak information about users from one group to another.


Demo Alleviate: Demonstrating Artificial Intelligence Enabled Virtual Assistance for Telehealth: The Mental Health Case

arXiv.org Artificial Intelligence

After the pandemic, artificial intelligence (AI) powered support for mental health care has become increasingly important. The breadth and complexity of significant challenges required to provide adequate care involve: (a) Personalized patient understanding, (b) Safety-constrained and medically validated chatbot patient interactions, and (c) Support for continued feedback-based refinements in design using chatbot-patient interactions. We propose Alleviate, a chatbot designed to assist patients suffering from mental health challenges with personalized care and assist clinicians with understanding their patients better. Alleviate draws from an array of publicly available clinically valid mental-health texts and databases, allowing Alleviate to make medically sound and informed decisions. In addition, Alleviate's modular design and explainable decision-making lends itself to robust and continued feedback-based refinements to its design. In this paper, we explain the different modules of Alleviate and submit a short video demonstrating Alleviate's capabilities to help patients and clinicians understand each other better to facilitate optimal care strategies.


"Is depression related to cannabis?": A knowledge-infused model for Entity and Relation Extraction with Limited Supervision

arXiv.org Artificial Intelligence

With strong marketing advocacy of the benefits of cannabis use for improved mental health, cannabis legalization is a priority among legislators. However, preliminary scientific research does not conclusively associate cannabis with improved mental health. In this study, we explore the relationship between depression and consumption of cannabis in a targeted social media corpus involving personal use of cannabis with the intent to derive its potential mental health benefit. We use tweets that contain an association among three categories annotated by domain experts - Reason, Effect, and Addiction. The state-of-the-art Natural Langauge Processing techniques fall short in extracting these relationships between cannabis phrases and the depression indicators. We seek to address the limitation by using domain knowledge; specifically, the Drug Abuse Ontology for addiction augmented with Diagnostic and Statistical Manual of Mental Disorders lexicons for mental health. Because of the lack of annotations due to the limited availability of the domain experts' time, we use supervised contrastive learning in conjunction with GPT-3 trained on a vast corpus to achieve improved performance even with limited supervision. Experimental results show that our method can significantly extract cannabis-depression relationships better than the state-of-the-art relation extractor. High-quality annotations can be provided using a nearest neighbor approach using the learned representations that can be used by the scientific community to understand the association between cannabis and depression better.