Goto

Collaborating Authors

 Khan, Sakib Mahmud


Development and Evaluation of Ensemble Learning-based Environmental Methane Detection and Intensity Prediction Models

arXiv.org Artificial Intelligence

The environmental impacts of global warming driven by methane (CH4) emissions have catalyzed significant research initiatives in developing novel technologies that enable proactive and rapid detection of CH4. Several data-driven machine learning (ML) models were tested to determine how well they identified fugitive CH4 and its related intensity in the affected areas. Various meteorological characteristics, including wind speed, temperature, pressure, relative humidity, water vapor, and heat flux, were included in the simulation. We used the ensemble learning method to determine the best-performing weighted ensemble ML models built upon several weaker lower-layer ML models to (i) detect the presence of CH4 as a classification problem and (ii) predict the intensity of CH4 as a regression problem.


Hybrid Quantum-Classical Neural Network for Cloud-supported In-Vehicle Cyberattack Detection

arXiv.org Artificial Intelligence

A classical computer works with ones and zeros, whereas a quantum computer uses ones, zeros, and superpositions of ones and zeros, which enables quantum computers to perform a vast number of calculations simultaneously compared to classical computers. In a cloud-supported cyber-physical system environment, running a machine learning application in quantum computers is often difficult, due to the existing limitations of the current quantum devices. However, with the combination of quantum-classical neural networks (NN), complex and high-dimensional features can be extracted by the classical NN to a reduced but more informative feature space to be processed by the existing quantum computers. In this study, we develop a hybrid quantum-classical NN to detect an amplitude shift cyber-attack on an in-vehicle control area network (CAN) dataset. We show that using the hybrid quantum classical NN, it is possible to achieve an attack detection accuracy of 94%, which is higher than a Long short-term memory (LSTM) NN (87%) or quantum NN alone (62%)


Efficacy of Statistical and Artificial Intelligence-based False Information Cyberattack Detection Models for Connected Vehicles

arXiv.org Artificial Intelligence

Connected vehicles (CVs), because of the external connectivity with other CVs and connected infrastructure, are vulnerable to cyberattacks that can instantly compromise the safety of the vehicle itself and other connected vehicles and roadway infrastructure. One such cyberattack is the false information attack, where an external attacker injects inaccurate information into the connected vehicles and eventually can cause catastrophic consequences by compromising safety-critical applications like the forward collision warning. The occurrence and target of such attack events can be very dynamic, making real-time and near-real-time detection challenging. Change point models, can be used for real-time anomaly detection caused by the false information attack. In this paper, we have evaluated three change point-based statistical models; Expectation Maximization, Cumulative Summation, and Bayesian Online Change Point Algorithms for cyberattack detection in the CV data. Also, data-driven artificial intelligence (AI) models, which can be used to detect known and unknown underlying patterns in the dataset, have the potential of detecting a real-time anomaly in the CV data. We have used six AI models to detect false information attacks and compared the performance for detecting the attacks with our developed change point models. Our study shows that change points models performed better in real-time false information attack detection compared to the performance of the AI models. Change point models having the advantage of no training requirements can be a feasible and computationally efficient alternative to AI models for false information attack detection in connected vehicles.