Goto

Collaborating Authors

 Khan, Najeeb


Pruning Convolutional Filters using Batch Bridgeout

arXiv.org Artificial Intelligence

State-of-the-art computer vision models are rapidly increasing in capacity, where the number of parameters far exceeds the number required to fit the training set. This results in better optimization and generalization performance. However, the huge size of contemporary models results in large inference costs and limits their use on resource-limited devices. In order to reduce inference costs, convolutional filters in trained neural networks could be pruned to reduce the run-time memory and computational requirements during inference. However, severe post-training pruning results in degraded performance if the training algorithm results in dense weight vectors. We propose the use of Batch Bridgeout, a sparsity inducing stochastic regularization scheme, to train neural networks so that they could be pruned efficiently with minimal degradation in performance. We evaluate the proposed method on common computer vision models VGGNet, ResNet, and Wide-ResNet on the CIFAR image classification task. For all the networks, experimental results show that Batch Bridgeout trained networks achieve higher accuracy across a wide range of pruning intensities compared to Dropout and weight decay regularization.


Sparseout: Controlling Sparsity in Deep Networks

arXiv.org Machine Learning

Dropout is commonly used to help reduce overfitting in deep neural networks. Sparsity is a potentially important property of neural networks, but is not explicitly controlled by Dropout-based regularization. In this work, we propose Sparseout a simple and efficient variant of Dropout that can be used to control the sparsity of the activations in a neural network. We theoretically prove that Sparseout is equivalent to an $L_q$ penalty on the features of a generalized linear model and that Dropout is a special case of Sparseout for neural networks. We empirically demonstrate that Sparseout is computationally inexpensive and is able to control the desired level of sparsity in the activations. We evaluated Sparseout on image classification and language modelling tasks to see the effect of sparsity on these tasks. We found that sparsity of the activations is favorable for language modelling performance while image classification benefits from denser activations. Sparseout provides a way to investigate sparsity in state-of-the-art deep learning models. Source code for Sparseout could be found at \url{https://github.com/najeebkhan/sparseout}.