Goto

Collaborating Authors

 Khan, Mohammad Aflah


Revisiting Privacy, Utility, and Efficiency Trade-offs when Fine-Tuning Large Language Models

arXiv.org Artificial Intelligence

We study the inherent trade-offs in minimizing privacy risks and maximizing utility, while maintaining high computational efficiency, when fine-tuning large language models (LLMs). A number of recent works in privacy research have attempted to mitigate privacy risks posed by memorizing fine-tuning data by using differentially private training methods (e.g., DP), albeit at a significantly higher computational cost (inefficiency). In parallel, several works in systems research have focussed on developing (parameter) efficient fine-tuning methods (e.g., LoRA), but few works, if any, investigated whether such efficient methods enhance or diminish privacy risks. In this paper, we investigate this gap and arrive at a surprising conclusion: efficient fine-tuning methods like LoRA mitigate privacy risks similar to private fine-tuning methods like DP. Our empirical finding directly contradicts prevailing wisdom that privacy and efficiency objectives are at odds during fine-tuning. Our finding is established by (a) carefully defining measures of privacy and utility that distinguish between memorizing sensitive and non-sensitive tokens in training and test datasets used in fine-tuning and (b) extensive evaluations using multiple open-source language models from Pythia, Gemma, and Llama families and different domain-specific datasets.


QUENCH: Measuring the gap between Indic and Non-Indic Contextual General Reasoning in LLMs

arXiv.org Artificial Intelligence

The rise of large language models (LLMs) has created a need for advanced benchmarking systems beyond traditional setups. To this end, we introduce QUENCH, a novel text-based English Quizzing Benchmark manually curated and transcribed from YouTube quiz videos. QUENCH possesses masked entities and rationales for the LLMs to predict via generation. At the intersection of geographical context and common sense reasoning, QUENCH helps assess world knowledge and deduction capabilities of LLMs via a zero-shot, open-domain quizzing setup. We perform an extensive evaluation on 7 LLMs and 4 metrics, investigating the influence of model size, prompting style, geographical context, and gold-labeled rationale generation. The benchmarking concludes with an error analysis to which the LLMs are prone.


Towards Reliable Latent Knowledge Estimation in LLMs: In-Context Learning vs. Prompting Based Factual Knowledge Extraction

arXiv.org Artificial Intelligence

We propose an approach for estimating the latent knowledge embedded inside large language models (LLMs). We leverage the in-context learning (ICL) abilities of LLMs to estimate the extent to which an LLM knows the facts stored in a knowledge base. Our knowledge estimator avoids reliability concerns with previous prompting-based methods, is both conceptually simpler and easier to apply, and we demonstrate that it can surface more of the latent knowledge embedded in LLMs. We also investigate how different design choices affect the performance of ICL-based knowledge estimation. Using the proposed estimator, we perform a large-scale evaluation of the factual knowledge of a variety of open source LLMs, like OPT, Pythia, Llama(2), Mistral, Gemma, etc. over a large set of relations and facts from the Wikidata knowledge base. We observe differences in the factual knowledge between different model families and models of different sizes, that some relations are consistently better known than others but that models differ in the precise facts they know, and differences in the knowledge of base models and their finetuned counterparts.


Probing Critical Learning Dynamics of PLMs for Hate Speech Detection

arXiv.org Artificial Intelligence

Despite the widespread adoption, there is a lack of research into how various critical aspects of pretrained language models (PLMs) affect their performance in hate speech detection. Through five research questions, our findings and recommendations lay the groundwork for empirically investigating different aspects of PLMs' use in hate speech detection. We deep dive into comparing different pretrained models, evaluating their seed robustness, finetuning settings, and the impact of pretraining data collection time. Our analysis reveals early peaks for downstream tasks during pretraining, the limited benefit of employing a more recent pretraining corpus, and the significance of specific layers during finetuning. We further call into question the use of domain-specific models and highlight the need for dynamic datasets for benchmarking hate speech detection.


Overview of the HASOC Subtrack at FIRE 2023: Identification of Tokens Contributing to Explicit Hate in English by Span Detection

arXiv.org Artificial Intelligence

As hate speech continues to proliferate on the web, it is becoming increasingly important to develop computational methods to mitigate it. Reactively, using black-box models to identify hateful content can perplex users as to why their posts were automatically flagged as hateful. On the other hand, proactive mitigation can be achieved by suggesting rephrasing before a post is made public. However, both mitigation techniques require information about which part of a post contains the hateful aspect, i.e., what spans within a text are responsible for conveying hate. Better detection of such spans can significantly reduce explicitly hateful content on the web. To further contribute to this research area, we organized HateNorm at HASOC-FIRE 2023, focusing on explicit span detection in English Tweets. A total of 12 teams participated in the competition, with the highest macro-F1 observed at 0.58.


The Art of Embedding Fusion: Optimizing Hate Speech Detection

arXiv.org Artificial Intelligence

Hate speech detection is a challenging natural language processing task that requires capturing linguistic and contextual nuances. Pre-trained language models (PLMs) offer rich semantic representations of text that can improve this task. However there is still limited knowledge about ways to effectively combine representations across PLMs and leverage their complementary strengths. In this work, we shed light on various combination techniques for several PLMs and comprehensively analyze their effectiveness. Our findings show that combining embeddings leads to slight improvements but at a high computational cost and the choice of combination has marginal effect on the final outcome.


Pythia: A Suite for Analyzing Large Language Models Across Training and Scaling

arXiv.org Artificial Intelligence

How do large language models (LLMs) develop and evolve over the course of training? How do these patterns change as models scale? To answer these questions, we introduce \textit{Pythia}, a suite of 16 LLMs all trained on public data seen in the exact same order and ranging in size from 70M to 12B parameters. We provide public access to 154 checkpoints for each one of the 16 models, alongside tools to download and reconstruct their exact training dataloaders for further study. We intend \textit{Pythia} to facilitate research in many areas, and we present several case studies including novel results in memorization, term frequency effects on few-shot performance, and reducing gender bias. We demonstrate that this highly controlled setup can be used to yield novel insights toward LLMs and their training dynamics. Trained models, analysis code, training code, and training data can be found at \url{https://github.com/EleutherAI/pythia}.


Beyond Negativity: Re-Analysis and Follow-Up Experiments on Hope Speech Detection

arXiv.org Artificial Intelligence

Health experts assert that hope plays a crucial role in enhancing individuals' physical and mental well-being, facilitating their recovery, and promoting restoration. Hope speech refers to comments, posts and other social media messages that offer support, reassurance, suggestions, inspiration, and insight. The detection of hope speech involves the analysis of such textual content, with the aim of identifying messages that invoke positive emotions in people. Our study aims to find computationally efficient yet comparable/superior methods for hope speech detection. We also make our codebase public here.