Goto

Collaborating Authors

 Khan, Azal Ahmad


Safety Aware Task Planning via Large Language Models in Robotics

arXiv.org Artificial Intelligence

The integration of large language models (LLMs) into robotic task planning has unlocked better reasoning capabilities for complex, long-horizon workflows. However, ensuring safety in LLM-driven plans remains a critical challenge, as these models often prioritize task completion over risk mitigation. This paper introduces SAFER (Safety-Aware Framework for Execution in Robotics), a multi-LLM framework designed to embed safety awareness into robotic task planning. SAFER employs a Safety Agent that operates alongside the primary task planner, providing safety feedback. Additionally, we introduce LLM-as-a-Judge, a novel metric leveraging LLMs as evaluators to quantify safety violations within generated task plans. Our framework integrates safety feedback at multiple stages of execution, enabling real-time risk assessment, proactive error correction, and transparent safety evaluation. We also integrate a control framework using Control Barrier Functions (CBFs) to ensure safety guarantees within SAFER's task planning. We evaluated SAFER against state-of-the-art LLM planners on complex long-horizon tasks involving heterogeneous robotic agents, demonstrating its effectiveness in reducing safety violations while maintaining task efficiency. We also verify the task planner and safety planner through actual hardware experiments involving multiple robots and a human.


LADs: Leveraging LLMs for AI-Driven DevOps

arXiv.org Artificial Intelligence

Automating cloud configuration and deployment remains a critical challenge due to evolving infrastructures, heterogeneous hardware, and fluctuating workloads. Existing solutions lack adaptability and require extensive manual tuning, leading to inefficiencies and misconfigurations. We introduce LADs, the first LLM-driven framework designed to tackle these challenges by ensuring robustness, adaptability, and efficiency in automated cloud management. Instead of merely applying existing techniques, LADs provides a principled approach to configuration optimization through in-depth analysis of what optimization works under which conditions. By leveraging Retrieval-Augmented Generation, Few-Shot Learning, Chain-of-Thought, and Feedback-Based Prompt Chaining, LADs generates accurate configurations and learns from deployment failures to iteratively refine system settings. Our findings reveal key insights into the trade-offs between performance, cost, and scalability, helping practitioners determine the right strategies for different deployment scenarios. For instance, we demonstrate how prompt chaining-based adaptive feedback loops enhance fault tolerance in multi-tenant environments and how structured log analysis with example shots improves configuration accuracy. Through extensive evaluations, LADs reduces manual effort, optimizes resource utilization, and improves system reliability. By open-sourcing LADs, we aim to drive further innovation in AI-powered DevOps automation.


A review of ensemble learning and data augmentation models for class imbalanced problems: combination, implementation and evaluation

arXiv.org Machine Learning

Class imbalance (CI) in classification problems arises when the number of observations belonging to one class is lower than the other. Ensemble learning combines multiple models to obtain a robust model and has been prominently used with data augmentation methods to address class imbalance problems. In the last decade, a number of strategies have been added to enhance ensemble learning and data augmentation methods, along with new methods such as generative adversarial networks (GANs). A combination of these has been applied in many studies, and the evaluation of different combinations would enable a better understanding and guidance for different application domains. In this paper, we present a computational study to evaluate data augmentation and ensemble learning methods used to address prominent benchmark CI problems. We present a general framework that evaluates 9 data augmentation and 9 ensemble learning methods for CI problems. Our objective is to identify the most effective combination for improving classification performance on imbalanced datasets. The results indicate that combinations of data augmentation methods with ensemble learning can significantly improve classification performance on imbalanced datasets. We find that traditional data augmentation methods such as the synthetic minority oversampling technique (SMOTE) and random oversampling (ROS) are not only better in performance for selected CI problems, but also computationally less expensive than GANs. Our study is vital for the development of novel models for handling imbalanced datasets.


PI-FL: Personalized and Incentivized Federated Learning

arXiv.org Artificial Intelligence

Personalized FL has been widely used to cater to heterogeneity challenges with non-IID data. A primary obstacle is considering the personalization process from the client's perspective to preserve their autonomy. Allowing the clients to participate in personalized FL decisions becomes significant due to privacy and security concerns, where the clients may not be at liberty to share private information necessary for producing good quality personalized models. Moreover, clients with high-quality data and resources are reluctant to participate in the FL process without reasonable incentive. In this paper, we propose PI-FL, a one-shot personalization solution complemented by a token-based incentive mechanism that rewards personalized training. PI-FL outperforms other state-of-the-art approaches and can generate good-quality personalized models while respecting clients' privacy.


Balanced Split: A new train-test data splitting strategy for imbalanced datasets

arXiv.org Artificial Intelligence

Classification data sets with skewed class proportions are called imbalanced. Class imbalance is a problem since most machine learning classification algorithms are built with an assumption of equal representation of all classes in the training dataset. Therefore to counter the class imbalance problem, many algorithm-level and data-level approaches have been developed. These mainly include ensemble learning and data augmentation techniques. This paper shows a new way to counter the class imbalance problem through a new data-splitting strategy called balanced split. Data splitting can play an important role in correctly classifying imbalanced datasets. We show that the commonly used data-splitting strategies have some disadvantages, and our proposed balanced split has solved those problems.