Goto

Collaborating Authors

 Khan, Asim


Accurate and Efficient Urban Street Tree Inventory with Deep Learning on Mobile Phone Imagery

arXiv.org Artificial Intelligence

Deforestation, a major contributor to climate change, poses detrimental consequences such as agricultural sector disruption, global warming, flash floods, and landslides. Conventional approaches to urban street tree inventory suffer from inaccuracies and necessitate specialised equipment. To overcome these challenges, this paper proposes an innovative method that leverages deep learning techniques and mobile phone imaging for urban street tree inventory. Our approach utilises a pair of images captured by smartphone cameras to accurately segment tree trunks and compute the diameter at breast height (DBH). Compared to traditional methods, our approach exhibits several advantages, including superior accuracy, reduced dependency on specialised equipment, and applicability in hard-to-reach areas. We evaluated our method on a comprehensive dataset of 400 trees and achieved a DBH estimation accuracy with an error rate of less than 2.5%. Our method holds significant potential for substantially improving forest management practices. By enhancing the accuracy and efficiency of tree inventory, our model empowers urban management to mitigate the adverse effects of deforestation and climate change.


Tomato Maturity Recognition with Convolutional Transformers

arXiv.org Artificial Intelligence

Tomatoes are a major crop worldwide, and accurately classifying their maturity is important for many agricultural applications, such as harvesting, grading, and quality control. In this paper, the authors propose a novel method for tomato maturity classification using a convolutional transformer. The convolutional transformer is a hybrid architecture that combines the strengths of convolutional neural networks (CNNs) and transformers. Additionally, this study introduces a new tomato dataset named KUTomaData, explicitly designed to train deep-learning models for tomato segmentation and classification. KUTomaData is a compilation of images sourced from a greenhouse in the UAE, with approximately 700 images available for training and testing. The dataset is prepared under various lighting conditions and viewing perspectives and employs different mobile camera sensors, distinguishing it from existing datasets. The contributions of this paper are threefold:Firstly, the authors propose a novel method for tomato maturity classification using a modular convolutional transformer. Secondly, the authors introduce a new tomato image dataset that contains images of tomatoes at different maturity levels. Lastly, the authors show that the convolutional transformer outperforms state-of-the-art methods for tomato maturity classification. The effectiveness of the proposed framework in handling cluttered and occluded tomato instances was evaluated using two additional public datasets, Laboro Tomato and Rob2Pheno Annotated Tomato, as benchmarks. The evaluation results across these three datasets demonstrate the exceptional performance of our proposed framework, surpassing the state-of-the-art by 58.14%, 65.42%, and 66.39% in terms of mean average precision scores for KUTomaData, Laboro Tomato, and Rob2Pheno Annotated Tomato, respectively.


Early and Accurate Detection of Tomato Leaf Diseases Using TomFormer

arXiv.org Artificial Intelligence

Tomato leaf diseases pose a significant challenge for tomato farmers, resulting in substantial reductions in crop productivity. The timely and precise identification of tomato leaf diseases is crucial for successfully implementing disease management strategies. This paper introduces a transformer-based model called TomFormer for the purpose of tomato leaf disease detection. The paper's primary contributions include the following: Firstly, we present a novel approach for detecting tomato leaf diseases by employing a fusion model that combines a visual transformer and a convolutional neural network. Secondly, we aim to apply our proposed methodology to the Hello Stretch robot to achieve real-time diagnosis of tomato leaf diseases. Thirdly, we assessed our method by comparing it to models like YOLOS, DETR, ViT, and Swin, demonstrating its ability to achieve state-of-the-art outcomes. For the purpose of the experiment, we used three datasets of tomato leaf diseases, namely KUTomaDATA, PlantDoc, and PlanVillage, where KUTomaDATA is being collected from a greenhouse in Abu Dhabi, UAE. Finally, we present a comprehensive analysis of the performance of our model and thoroughly discuss the limitations inherent in our approach. TomFormer performed well on the KUTomaDATA, PlantDoc, and PlantVillage datasets, with mean average accuracy (mAP) scores of 87%, 81%, and 83%, respectively. The comparative results in terms of mAP demonstrate that our method exhibits robustness, accuracy, efficiency, and scalability. Furthermore, it can be readily adapted to new datasets. We are confident that our work holds the potential to significantly influence the tomato industry by effectively mitigating crop losses and enhancing crop yields.