Goto

Collaborating Authors

 Khalifa, Muhammad


Few-shot Reranking for Multi-hop QA via Language Model Prompting

arXiv.org Artificial Intelligence

We study few-shot reranking for multi-hop QA with open-domain questions. To alleviate the need for a large number of labeled question-document pairs for retriever training, we propose PromptRank, which relies on large language models prompting for multi-hop path reranking. PromptRank first constructs an instruction-based prompt that includes a candidate document path and then computes the relevance score between a given question and the path based on the conditional likelihood of the question given the path prompt according to a language model. PromptRank yields strong retrieval performance on HotpotQA with only 128 training examples compared to state-of-the-art methods trained on thousands of examples -- 73.6 recall@10 by PromptRank vs. 77.8 by PathRetriever and 77.5 by multi-hop dense retrieval. Code available at https://github.com/mukhal/PromptRank


A PhD Student's Perspective on Research in NLP in the Era of Very Large Language Models

arXiv.org Artificial Intelligence

Recent progress in large language models has enabled the deployment of many generative NLP applications. At the same time, it has also led to a misleading public discourse that ``it's all been solved.'' Not surprisingly, this has in turn made many NLP researchers -- especially those at the beginning of their career -- wonder about what NLP research area they should focus on. This document is a compilation of NLP research directions that are rich for exploration, reflecting the views of a diverse group of PhD students in an academic research lab. While we identify many research areas, many others exist; we do not cover those areas that are currently addressed by LLMs but where LLMs lag behind in performance, or those focused on LLM development. We welcome suggestions for other research directions to include: https://bit.ly/nlp-era-llm


BOLT: Fast Energy-based Controlled Text Generation with Tunable Biases

arXiv.org Artificial Intelligence

Energy-based models (EBMs) have gained popularity for controlled text generation due to their high applicability to a wide range of constraints. However, sampling from EBMs is non-trivial, as it often requires a large number of iterations to converge to plausible text, which slows down the decoding process and makes it less practical for real-world applications. In this work, we propose BOLT, which relies on tunable biases to directly adjust the language model's output logits. Unlike prior work, BOLT maintains the generator's autoregressive nature to assert a strong control on token-wise conditional dependencies and overall fluency, and thus converges faster. When compared with state-of-the-arts on controlled generation tasks using both soft constraints (e.g., sentiment control) and hard constraints (e.g., keyword-guided topic control), BOLT demonstrates significantly improved efficiency and fluency. On sentiment control, BOLT is 7x faster than competitive baselines, and more fluent in 74.4% of the evaluation samples according to human judges.


Self-Training Pre-Trained Language Models for Zero- and Few-Shot Multi-Dialectal Arabic Sequence Labeling

arXiv.org Artificial Intelligence

A sufficient amount of annotated data is required to fine-tune pre-trained language models for downstream tasks. Unfortunately, attaining labeled data can be costly, especially for multiple language varieties/dialects. We propose to self-train pre-trained language models in zero- and few-shot scenarios to improve the performance on data-scarce dialects using only resources from data-rich ones. We demonstrate the utility of our approach in the context of Arabic sequence labeling by using a language model fine-tuned on Modern Standard Arabic (MSA) only to predict named entities (NE) and part-of-speech (POS) tags on several dialectal Arabic (DA) varieties. We show that self-training is indeed powerful, improving zero-shot MSA-to-DA transfer by as large as \texttildelow 10\% F$_1$ (NER) and 2\% accuracy (POS tagging). We acquire even better performance in few-shot scenarios with limited labeled data. We conduct an ablation experiment and show that the performance boost observed directly results from the unlabeled DA examples for self-training and opens up opportunities for developing DA models exploiting only MSA resources. Our approach can also be extended to other languages and tasks.


A Distributional Approach to Controlled Text Generation

arXiv.org Artificial Intelligence

We propose a Distributional Approach to address Controlled Text Generation from pre-trained Language Models (LMs). This view permits to define, in a single formal framework, "pointwise" and "distributional" constraints over the target LM -- to our knowledge, this is the first approach with such generality -- while minimizing KL divergence with the initial LM distribution. The optimal target distribution is then uniquely determined as an explicit EBM (Energy-Based Model) representation. From that optimal representation we then train the target controlled autoregressive LM through an adaptive distributional variant of Policy Gradient. We conduct a first set of experiments over pointwise constraints showing the advantages of our approach over a set of baselines, in terms of obtaining a controlled LM balancing constraint satisfaction with divergence from the initial LM (GPT-2). We then perform experiments over distributional constraints, a unique feature of our approach, demonstrating its potential as a remedy to the problem of Bias in Language Models. Through an ablation study we show the effectiveness of our adaptive technique for obtaining faster convergence.


Extracting Synonyms from Bilingual Dictionaries

arXiv.org Artificial Intelligence

We present our progress in developing a novel algorithm to extract synonyms from bilingual dictionaries. Identification and usage of synonyms play a significant role in improving the performance of information access applications. The idea is to construct a translation graph from translation pairs, then to extract and consolidate cyclic paths to form bilingual sets of synonyms. The initial evaluation of this algorithm illustrates promising results in extracting Arabic-English bilingual synonyms. In the evaluation, we first converted the synsets in the Arabic WordNet into translation pairs (i.e., losing word-sense memberships). Next, we applied our algorithm to rebuild these synsets. We compared the original and extracted synsets obtaining an F-Measure of 82.3% and 82.1% for Arabic and English synsets extraction, respectively.


Will Your Forthcoming Book be Successful? Predicting Book Success with CNN and Readability Scores

arXiv.org Artificial Intelligence

Predicting the potential success of a book in advance is vital in many applications. This could help both publishers and readers in their decision making process whether or not a book is worth publishing and reading, respectively. This prediction could also help authors decide whether a book draft is good enough to send to a publisher. We propose a model that leverages Convolutional Neural Networks along with readability indices. Unlike previous methods, our method includes no count-based, lexical, or syntactic hand-crafted features. Instead, we make use of a pre-trained sentence encoder to encode the book sentences. We highlight the connection between this task and book genre identification by showing that embeddings that are good at capturing the separability of book genres are better for the book success prediction task. We also show that only the first 1K sentences are good enough to predict the successability of books. Our proposed model outperforms strong baselines on this task by as large as 6.4% F1-score.