Khaleghi, Behnam
HDReason: Algorithm-Hardware Codesign for Hyperdimensional Knowledge Graph Reasoning
Chen, Hanning, Ni, Yang, Zakeri, Ali, Zou, Zhuowen, Yun, Sanggeon, Wen, Fei, Khaleghi, Behnam, Srinivasa, Narayan, Latapie, Hugo, Imani, Mohsen
In recent times, a plethora of hardware accelerators have been put forth for graph learning applications such as vertex classification and graph classification. However, previous works have paid little attention to Knowledge Graph Completion (KGC), a task that is well-known for its significantly higher algorithm complexity. The state-of-the-art KGC solutions based on graph convolution neural network (GCN) involve extensive vertex/relation embedding updates and complicated score functions, which are inherently cumbersome for acceleration. As a result, existing accelerator designs are no longer optimal, and a novel algorithm-hardware co-design for KG reasoning is needed. Recently, brain-inspired HyperDimensional Computing (HDC) has been introduced as a promising solution for lightweight machine learning, particularly for graph learning applications. In this paper, we leverage HDC for an intrinsically more efficient and acceleration-friendly KGC algorithm. We also co-design an acceleration framework named HDReason targeting FPGA platforms. On the algorithm level, HDReason achieves a balance between high reasoning accuracy, strong model interpretability, and less computation complexity. In terms of architecture, HDReason offers reconfigurability, high training throughput, and low energy consumption. When compared with NVIDIA RTX 4090 GPU, the proposed accelerator achieves an average 10.6x speedup and 65x energy efficiency improvement. When conducting cross-models and cross-platforms comparison, HDReason yields an average 4.2x higher performance and 3.4x better energy efficiency with similar accuracy versus the state-of-the-art FPGA-based GCN training platform.
HD-Bind: Encoding of Molecular Structure with Low Precision, Hyperdimensional Binary Representations
Jones, Derek, Allen, Jonathan E., Zhang, Xiaohua, Khaleghi, Behnam, Kang, Jaeyoung, Xu, Weihong, Moshiri, Niema, Rosing, Tajana S.
Publicly available collections of drug-like molecules have grown to comprise 10s of billions of possibilities in recent history due to advances in chemical synthesis. Traditional methods for identifying ``hit'' molecules from a large collection of potential drug-like candidates have relied on biophysical theory to compute approximations to the Gibbs free energy of the binding interaction between the drug to its protein target. A major drawback of the approaches is that they require exceptional computing capabilities to consider for even relatively small collections of molecules. Hyperdimensional Computing (HDC) is a recently proposed learning paradigm that is able to leverage low-precision binary vector arithmetic to build efficient representations of the data that can be obtained without the need for gradient-based optimization approaches that are required in many conventional machine learning and deep learning approaches. This algorithmic simplicity allows for acceleration in hardware that has been previously demonstrated for a range of application areas. We consider existing HDC approaches for molecular property classification and introduce two novel encoding algorithms that leverage the extended connectivity fingerprint (ECFP) algorithm. We show that HDC-based inference methods are as much as 90 times more efficient than more complex representative machine learning methods and achieve an acceleration of nearly 9 orders of magnitude as compared to inference with molecular docking. We demonstrate multiple approaches for the encoding of molecular data for HDC and examine their relative performance on a range of challenging molecular property prediction and drug-protein binding classification tasks. Our work thus motivates further investigation into molecular representation learning to develop ultra-efficient pre-screening tools.
Streaming Encoding Algorithms for Scalable Hyperdimensional Computing
Thomas, Anthony, Khaleghi, Behnam, Jha, Gopi Krishna, Dasgupta, Sanjoy, Himayat, Nageen, Iyer, Ravi, Jain, Nilesh, Rosing, Tajana
Hyperdimensional computing (HDC) is a paradigm for data representation and learning originating in computational neuroscience. HDC represents data as high-dimensional, low-precision vectors which can be used for a variety of information processing tasks like learning or recall. The mapping to high-dimensional space is a fundamental problem in HDC, and existing methods encounter scalability issues when the input data itself is high-dimensional. In this work, we explore a family of streaming encoding techniques based on hashing. We show formally that these methods enjoy comparable guarantees on performance for learning applications while being substantially more efficient than existing alternatives. We validate these results experimentally on a popular high-dimensional classification problem and show that our approach easily scales to very large data sets.
Prive-HD: Privacy-Preserved Hyperdimensional Computing
Khaleghi, Behnam, Imani, Mohsen, Rosing, Tajana
The privacy of data is a major challenge in machine learning as a trained model may expose sensitive information of the enclosed dataset. Besides, the limited computation capability and capacity of edge devices have made cloud-hosted inference inevitable. Sending private information to remote servers makes the privacy of inference also vulnerable because of susceptible communication channels or even untrustworthy hosts. In this paper, we target privacy-preserving training and inference of brain-inspired Hyperdimensional (HD) computing, a new learning algorithm that is gaining traction due to its light-weight computation and robustness particularly appealing for edge devices with tight constraints. Indeed, despite its promising attributes, HD computing has virtually no privacy due to its reversible computation. We present an accuracy-privacy trade-off method through meticulous quantization and pruning of hypervectors, the building blocks of HD, to realize a differentially private model as well as to obfuscate the information sent for cloud-hosted inference. Finally, we show how the proposed techniques can be also leveraged for efficient hardware implementation.