Goto

Collaborating Authors

 Kfir Levy



k*-Nearest Neighbors: From Global to Local

Neural Information Processing Systems

The weighted k-nearest neighbors algorithm is one of the most fundamental nonparametric methods in pattern recognition and machine learning. The question of setting the optimal number of neighbors as well as the optimal weights has received much attention throughout the years, nevertheless this problem seems to have remained unsettled. In this paper we offer a simple approach to locally weighted regression/classification, where we make the bias-variance tradeoff explicit. Our formulation enables us to phrase a notion of optimal weights, and to efficiently find these weights as well as the optimal number of neighbors efficiently and adaptively, for each data point whose value we wish to estimate. The applicability of our approach is demonstrated on several datasets, showing superior performance over standard locally weighted methods.


Online to Offline Conversions, Universality and Adaptive Minibatch Sizes

Neural Information Processing Systems

We present an approach towards convex optimization that relies on a novel scheme which converts adaptive online algorithms into offline methods. In the offline optimization setting, our derived methods are shown to obtain favourable adaptive guarantees which depend on the harmonic sum of the queried gradients. We further show that our methods implicitly adapt to the objective's structure: in the smooth case fast convergence rates are ensured without any prior knowledge of the smoothness parameter, while still maintaining guarantees in the non-smooth setting. Our approach has a natural extension to the stochastic setting, resulting in a lazy version of SGD (stochastic GD), where minibathces are chosen adaptively depending on the magnitude of the gradients.