Keyak, Joyce H
Multi-view information fusion using multi-view variational autoencoders to predict proximal femoral strength
Zhao, Chen, Keyak, Joyce H, Cao, Xuewei, Sha, Qiuying, Wu, Li, Luo, Zhe, Zhao, Lanjuan, Tian, Qing, Qiu, Chuan, Su, Ray, Shen, Hui, Deng, Hong-Wen, Zhou, Weihua
The aim of this paper is to design a deep learning-based model to predict proximal femoral strength using multi-view information fusion. Method: We developed new models using multi-view variational autoencoder (MVAE) for feature representation learning and a product of expert (PoE) model for multi-view information fusion. We applied the proposed models to an in-house Louisiana Osteoporosis Study (LOS) cohort with 931 male subjects, including 345 African Americans and 586 Caucasians. With an analytical solution of the product of Gaussian distribution, we adopted variational inference to train the designed MVAE-PoE model to perform common latent feature extraction. We performed genome-wide association studies (GWAS) to select 256 genetic variants with the lowest p-values for each proximal femoral strength and integrated whole genome sequence (WGS) features and DXA-derived imaging features to predict proximal femoral strength. Results: The best prediction model for fall fracture load was acquired by integrating WGS features and DXA-derived imaging features. The designed models achieved the mean absolute percentage error of 18.04%, 6.84% and 7.95% for predicting proximal femoral fracture loads using linear models of fall loading, nonlinear models of fall loading, and nonlinear models of stance loading, respectively. Compared to existing multi-view information fusion methods, the proposed MVAE-PoE achieved the best performance. Conclusion: The proposed models are capable of predicting proximal femoral strength using WGS features and DXA-derived imaging features. Though this tool is not a substitute for FEA using QCT images, it would make improved assessment of hip fracture risk more widely available while avoiding the increased radiation dosage and clinical costs from QCT.
A New Hip Fracture Risk Index Derived from FEA-Computed Proximal Femur Fracture Loads and Energies-to-Failure
Cao, Xuewei, Keyak, Joyce H, Sigurdsson, Sigurdur, Zhao, Chen, Zhou, Weihua, Liu, Anqi, Lang, Thomas, Deng, Hong-Wen, Gudnason, Vilmundur, Sha, Qiuying
Hip fracture risk assessment is an important but challenging task. Quantitative CT-based patient specific finite element analysis (FEA) computes the force (fracture load) to break the proximal femur in a particular loading condition. It provides different structural information about the proximal femur that can influence a subject overall fracture risk. To obtain a more robust measure of fracture risk, we used principal component analysis (PCA) to develop a global FEA computed fracture risk index that incorporates the FEA-computed yield and ultimate failure loads and energies to failure in four loading conditions (single-limb stance and impact from a fall onto the posterior, posterolateral, and lateral aspects of the greater trochanter) of 110 hip fracture subjects and 235 age and sex matched control subjects from the AGES-Reykjavik study. We found that the first PC (PC1) of the FE parameters was the only significant predictor of hip fracture. Using a logistic regression model, we determined if prediction performance for hip fracture using PC1 differed from that using FE parameters combined by stratified random resampling with respect to hip fracture status. The results showed that the average of the area under the receive operating characteristic curve (AUC) using PC1 was always higher than that using all FE parameters combined in the male subjects. The AUC of PC1 and AUC of the FE parameters combined were not significantly different than that in the female subjects or in all subjects