Kettimuthu, Rajkumar
Effective Defect Detection Using Instance Segmentation for NDI
Rahman, Ashiqur, Seethi, Venkata Devesh Reddy, Yunker, Austin, Kral, Zachary, Kettimuthu, Rajkumar, Alhoori, Hamed
Ultrasonic testing is a common Non-Destructive Inspection (NDI) method used in aerospace manufacturing. However, the complexity and size of the ultrasonic scans make it challenging to identify defects through visual inspection or machine learning models. Using computer vision techniques to identify defects from ultrasonic scans is an evolving research area. In this study, we used instance segmentation to identify the presence of defects in the ultrasonic scan images of composite panels that are representative of real components manufactured in aerospace. We used two models based on Mask-RCNN (Detectron 2) and YOLO 11 respectively. Additionally, we implemented a simple statistical pre-processing technique that reduces the burden of requiring custom-tailored pre-processing techniques. Our study demonstrates the feasibility and effectiveness of using instance segmentation in the NDI pipeline by significantly reducing data pre-processing time, inspection time, and overall costs.
Rapid detection of rare events from in situ X-ray diffraction data using machine learning
Zheng, Weijian, Park, Jun-Sang, Kenesei, Peter, Ali, Ahsan, Liu, Zhengchun, Foster, Ian T., Schwarz, Nicholas, Kettimuthu, Rajkumar, Miceli, Antonino, Sharma, Hemant
High-energy X-ray diffraction methods can non-destructively map the 3D microstructure and associated attributes of metallic polycrystalline engineering materials in their bulk form. These methods are often combined with external stimuli such as thermo-mechanical loading to take snapshots over time of the evolving microstructure and attributes. However, the extreme data volumes and the high costs of traditional data acquisition and reduction approaches pose a barrier to quickly extracting actionable insights and improving the temporal resolution of these snapshots. Here we present a fully automated technique capable of rapidly detecting the onset of plasticity in high-energy X-ray microscopy data. Our technique is computationally faster by at least 50 times than the traditional approaches and works for data sets that are up to 9 times sparser than a full data set. This new technique leverages self-supervised image representation learning and clustering to transform massive data into compact, semantic-rich representations of visually salient characteristics (e.g., peak shapes). These characteristics can be a rapid indicator of anomalous events such as changes in diffraction peak shapes. We anticipate that this technique will provide just-in-time actionable information to drive smarter experiments that effectively deploy multi-modal X-ray diffraction methods that span many decades of length scales.
Fast and accurate learned multiresolution dynamical downscaling for precipitation
Wang, Jiali, Liu, Zhengchun, Foster, Ian, Chang, Won, Kettimuthu, Rajkumar, Kotamarthi, Rao
This study develops a neural network-based approach for emulating high-resolution modeled precipitation data with comparable statistical properties but at greatly reduced computational cost. The key idea is to use combination of low- and high- resolution simulations to train a neural network to map from the former to the latter. Specifically, we define two types of CNNs, one that stacks variables directly and one that encodes each variable before stacking, and we train each CNN type both with a conventional loss function, such as mean square error (MSE), and with a conditional generative adversarial network (CGAN), for a total of four CNN variants. We compare the four new CNN-derived high-resolution precipitation results with precipitation generated from original high resolution simulations, a bilinear interpolater and the state-of-the-art CNN-based super-resolution (SR) technique. Results show that the SR technique produces results similar to those of the bilinear interpolator with smoother spatial and temporal distributions and smaller data variabilities and extremes than the original high resolution simulations. While the new CNNs trained by MSE generate better results over some regions than the interpolator and SR technique do, their predictions are still not as close as the original high resolution simulations. The CNNs trained by CGAN generate more realistic and physically reasonable results, better capturing not only data variability in time and space but also extremes such as intense and long-lasting storms. The new proposed CNN-based downscaling approach can downscale precipitation from 50~km to 12~km in 14~min for 30~years once the network is trained (training takes 4~hours using 1~GPU), while the conventional dynamical downscaling would take 1~month using 600 CPU cores to generate simulations at the resolution of 12~km over contiguous United States.