Keshavan, Raghunandan H.
Recommender Systems with Generative Retrieval
Rajput, Shashank, Mehta, Nikhil, Singh, Anima, Keshavan, Raghunandan H., Vu, Trung, Heldt, Lukasz, Hong, Lichan, Tay, Yi, Tran, Vinh Q., Samost, Jonah, Kula, Maciej, Chi, Ed H., Sathiamoorthy, Maheswaran
Modern recommender systems perform large-scale retrieval by first embedding queries and item candidates in the same unified space, followed by approximate nearest neighbor search to select top candidates given a query embedding. In this paper, we propose a novel generative retrieval approach, where the retrieval model autoregressively decodes the identifiers of the target candidates. To that end, we create semantically meaningful tuple of codewords to serve as a Semantic ID for each item. Given Semantic IDs for items in a user session, a Transformer-based sequence-to-sequence model is trained to predict the Semantic ID of the next item that the user will interact with. To the best of our knowledge, this is the first Semantic ID-based generative model for recommendation tasks. We show that recommender systems trained with the proposed paradigm significantly outperform the current SOTA models on various datasets. In addition, we show that incorporating Semantic IDs into the sequence-to-sequence model enhances its ability to generalize, as evidenced by the improved retrieval performance observed for items with no prior interaction history.
Matrix Completion from Noisy Entries
Keshavan, Raghunandan H., Montanari, Andrea, Oh, Sewoong
Given a matrix M of low-rank, we consider the problem of reconstructing it from noisy observations of a small, random subset of its entries. The problem arises in a variety of applications, from collaborative filtering (the `Netflix problem') to structure-from-motion and positioning. We study a low complexity algorithm introduced by Keshavan et al.(2009), based on a combination of spectral techniques and manifold optimization, that we call here OptSpace. We prove performance guarantees that are order-optimal in a number of circumstances.
Regularization for Matrix Completion
Keshavan, Raghunandan H., Montanari, Andrea
We consider the problem of reconstructing a low rank matrix from noisy observations of a subset of its entries. This task has applications in statistical learning, computer vision, and signal processing. In these contexts, "noise" generically refers to any contribution to the data that is not captured by the low-rank model. In most applications, the noise level is large compared to the underlying signal and it is important to avoid overfitting. In order to tackle this problem, we define a regularized cost function well suited for spectral reconstruction methods. Within a random noise model, and in the large system limit, we prove that the resulting accuracy undergoes a phase transition depending on the noise level and on the fraction of observed entries. The cost function can be minimized using OPTSPACE (a manifold gradient descent algorithm). Numerical simulations show that this approach is competitive with state-of-the-art alternatives.
Matrix Completion from a Few Entries
Keshavan, Raghunandan H., Montanari, Andrea, Oh, Sewoong