Not enough data to create a plot.
Try a different view from the menu above.
Kervadec, Corentin
Evil twins are not that evil: Qualitative insights into machine-generated prompts
Rakotonirina, Nathanaël Carraz, Kervadec, Corentin, Franzon, Francesca, Baroni, Marco
It has been widely observed that language models (LMs) respond in predictable ways to algorithmically generated prompts that are seemingly unintelligible. This is both a sign that we lack a full understanding of how LMs work, and a practical challenge, because opaqueness can be exploited for harmful uses of LMs, such as jailbreaking. We present the first thorough analysis of opaque machine-generated prompts, or autoprompts, pertaining to 3 LMs of different sizes and families. We find that machine-generated prompts are characterized by a last token that is often intelligible and strongly affects the generation. A small but consistent proportion of the previous tokens are fillers that probably appear in the prompt as a by-product of the fact that the optimization process fixes the number of tokens. The remaining tokens tend to have at least a loose semantic relation with the generation, although they do not engage in well-formed syntactic relations with it. We find moreover that some of the ablations we applied to machine-generated prompts can also be applied to natural language sequences, leading to similar behavior, suggesting that autoprompts are a direct consequence of the way in which LMs process linguistic inputs in general.
Emergence of a High-Dimensional Abstraction Phase in Language Transformers
Cheng, Emily, Doimo, Diego, Kervadec, Corentin, Macocco, Iuri, Yu, Jade, Laio, Alessandro, Baroni, Marco
A language model (LM) is a mapping from a linguistic context to an output token. However, much remains to be known about this mapping, including how its geometric properties relate to its function. We take a high-level geometric approach to its analysis, observing, across five pre-trained transformer-based LMs and three input datasets, a distinct phase characterized by high intrinsic dimensionality. During this phase, representations (1) correspond to the first full linguistic abstraction of the input; (2) are the first to viably transfer to downstream tasks; (3) predict each other across different LMs. Moreover, we find that an earlier onset of the phase strongly predicts better language modelling performance. In short, our results suggest that a central high-dimensionality phase underlies core linguistic processing in many common LM architectures.
Bridging Information-Theoretic and Geometric Compression in Language Models
Cheng, Emily, Kervadec, Corentin, Baroni, Marco
For a language model (LM) to faithfully model human language, it must compress vast, potentially infinite information into relatively few dimensions. We propose analyzing compression in (pre-trained) LMs from two points of view: geometric and information-theoretic. We demonstrate that the two views are highly correlated, such that the intrinsic geometric dimension of linguistic data predicts their coding length under the LM. We then show that, in turn, high compression of a linguistic dataset predicts rapid adaptation to that dataset, confirming that being able to compress linguistic information is an important part of successful LM performance. As a practical byproduct of our analysis, we evaluate a battery of intrinsic dimension estimators for the first time on linguistic data, showing that only some encapsulate the relationship between information-theoretic compression, geometric compression, and ease-of-adaptation.
Unnatural language processing: How do language models handle machine-generated prompts?
Kervadec, Corentin, Franzon, Francesca, Baroni, Marco
Language model prompt optimization research has shown that semantically and grammatically well-formed manually crafted prompts are routinely outperformed by automatically generated token sequences with no apparent meaning or syntactic structure, including sequences of vectors from a model's embedding space. We use machine-generated prompts to probe how models respond to input that is not composed of natural language expressions. We study the behavior of models of different sizes in multiple semantic tasks in response to both continuous and discrete machine-generated prompts, and compare it to the behavior in response to human-generated natural-language prompts. Even when producing a similar output, machine-generated and human prompts trigger different response patterns through the network processing pathways, including different perplexities, different attention and output entropy distributions, and different unit activation profiles. We provide preliminary insight into the nature of the units activated by different prompt types, suggesting that only natural language prompts recruit a genuinely linguistic circuit.
The Many Moods of Emotion
Vielzeuf, Valentin, Kervadec, Corentin, Pateux, Stéphane, Jurie, Frédéric
Abstract-- This paper presents a novel approach to the facial expression generation problem. Building upon the assumption of the psychological community that emotion is intrinsically continuous, we first design our own continuous emotion representation with a 3-dimensional latent space issued from a neural network trained on discrete emotion classification. The so-obtained representation can be used to annotate large in the wild datasets and later used to trained a Generative Adversarial Network. We first show that our model is able to map back to discrete emotion classes with a objectively and subjectively better quality of the images than usual discrete approaches. But also that we are able to pave the larger space of possible facial expressions, generating the many moods of emotion. Moreover, two axis in this space may be found to generate similar expression changes as in traditional continuous representations such as arousalvalence. Finally we show from visual interpretation, that the third remaining dimension is highly related to the well-known dominance dimension from psychology. Affective computing is a topic of broad interest, finding applications in many fields such as healthcare, marketing or human-machine interfaces.
An Occam's Razor View on Learning Audiovisual Emotion Recognition with Small Training Sets
Vielzeuf, Valentin, Kervadec, Corentin, Pateux, Stéphane, Lechervy, Alexis, Jurie, Frédéric
This paper presents a light-weight and accurate deep neural model for audiovisual emotion recognition. To design this model, the authors followed a philosophy of simplicity, drastically limiting the number of parameters to learn from the target datasets, always choosing the simplest earning methods: i) transfer learning and low-dimensional space embedding allows to reduce the dimensionality of the representations. ii) The isual temporal information is handled by a simple score-per-frame selection process, averaged across time. iii) A simple frame selection echanism is also proposed to weight the images of a sequence. iv) The fusion of the different modalities is performed at prediction level (late usion). We also highlight the inherent challenges of the AFEW dataset and the difficulty of model selection with as few as 383 validation equences. The proposed real-time emotion classifier achieved a state-of-the-art accuracy of 60.64 % on the test set of AFEW, and ranked 4th at he Emotion in the Wild 2018 challenge.
CAKE: Compact and Accurate K-dimensional representation of Emotion
Kervadec, Corentin, Vielzeuf, Valentin, Pateux, Stéphane, Lechervy, Alexis, Jurie, Frédéric
Inspired by works from the psychology community, we first study the link between the compact two-dimensional representation of the emotion known as arousal-valence, and discrete emotion classes (e.g. anger, happiness, sadness, etc.) used in the computer vision community. It enables to assess the benefits -- in terms of discrete emotion inference -- of adding an extra dimension to arousal-valence (usually named dominance). Building on these observations, we propose CAKE, a 3-dimensional representation of emotion learned in a multi-domain fashion, achieving accurate emotion recognition on several public datasets. Moreover, we visualize how emotions boundaries are organized inside DNN representations and show that DNNs are implicitly learning arousal-valence-like descriptions of emotions. Finally, we use the CAKE representation to compare the quality of the annotations of different public datasets.