Goto

Collaborating Authors

 Kelsey, Tom


A framework for large-scale distributed AI search across disconnected heterogeneous infrastructures

arXiv.org Artificial Intelligence

We present a framework for a large-scale distributed eScience Artificial Intelligence search. Our approach is generic and can be used for many different problems. Unlike many other approaches, we do not require dedicated machines, homogeneous infrastructure or the ability to communicate between nodes. We give special consideration to the robustness of the framework, minimising the loss of effort even after total loss of infrastructure, and allowing easy verification of every step of the distribution process. In contrast to most eScience applications, the input data and specification of the problem is very small, being easily given in a paragraph of text. The unique challenges our framework tackles are related to the combinatorial explosion of the space that contains the possible solutions and the robustness of long-running computations. Not only is the time required to finish the computations unknown, but also the resource requirements may change during the course of the computation. We demonstrate the applicability of our framework by using it to solve a challenging and hitherto open problem in computational mathematics. The results demonstrate that our approach easily scales to computations of a size that would have been impossible to tackle in practice just a decade ago.


The Exact Closest String Problem as a Constraint Satisfaction Problem

arXiv.org Artificial Intelligence

We report (to our knowledge) the first evaluation of Constraint Satisfaction as a computational framework for solving closest string problems. We show that careful consideration of symbol occurrences can provide search heuristics that provide several orders of magnitude speedup at and above the optimal distance. We also report (to our knowledge) the first analysis and evaluation -- using any technique -- of the computational difficulties involved in the identification of all closest strings for a given input set. We describe algorithms for web-scale distributed solution of closest string problems, both purely based on AI backtrack search and also hybrid numeric-AI methods.