Goto

Collaborating Authors

 Keller, Mikaela


Recipient Profiling: Predicting Characteristics from Messages

arXiv.org Artificial Intelligence

It has been shown in the field of Author Profiling that texts may inadvertently reveal sensitive information about their authors, such as gender or age. This raises important privacy concerns that have been extensively addressed in the literature, in particular with the development of methods to hide such information. We argue that, when these texts are in fact messages exchanged between individuals, this is not the end of the story. Indeed, in this case, a second party, the intended recipient, is also involved and should be considered. In this work, we investigate the potential privacy leaks affecting them, that is we propose and address the problem of Recipient Profiling. We provide empirical evidence that such a task is feasible on several publicly accessible datasets (https://huggingface.co/datasets/sileod/recipient_profiling). Furthermore, we show that the learned models can be transferred to other datasets, albeit with a loss in accuracy.


Analyzing Byte-Pair Encoding on Monophonic and Polyphonic Symbolic Music: A Focus on Musical Phrase Segmentation

arXiv.org Artificial Intelligence

Byte-Pair Encoding (BPE) is an algorithm commonly used in Natural Language Processing to build a vocabulary of subwords, which has been recently applied to symbolic music. Given that symbolic music can differ significantly from text, particularly with polyphony, we investigate how BPE behaves with different types of musical content. This study provides a qualitative analysis of BPE's behavior across various instrumentations and evaluates its impact on a musical phrase segmentation task for both monophonic and polyphonic music. Our findings show that the BPE training process is highly dependent on the instrumentation and that BPE "supertokens" succeed in capturing abstract musical content. In a musical phrase segmentation task, BPE notably improves performance in a polyphonic setting, but enhances performance in monophonic tunes only within a specific range of BPE merges.


Synthetic Data Generation for Intersectional Fairness by Leveraging Hierarchical Group Structure

arXiv.org Artificial Intelligence

In this paper, we introduce a data augmentation approach specifically tailored to enhance intersectional fairness in classification tasks. Our method capitalizes on the hierarchical structure inherent to intersectionality, by viewing groups as intersections of their parent categories. This perspective allows us to augment data for smaller groups by learning a transformation function that combines data from these parent groups. Our empirical analysis, conducted on four diverse datasets including both text and images, reveals that classifiers trained with this data augmentation approach achieve superior intersectional fairness and are more robust to ``leveling down'' when compared to methods optimizing traditional group fairness metrics.


Natural Language Processing Methods for Symbolic Music Generation and Information Retrieval: a Survey

arXiv.org Artificial Intelligence

Several adaptations of Transformers models have been developed in various domains since its breakthrough in Natural Language Processing (NLP). This trend has spread into the field of Music Information Retrieval (MIR), including studies processing music data. However, the practice of leveraging NLP tools for symbolic music data is not novel in MIR. Music has been frequently compared to language, as they share several similarities, including sequential representations of text and music. These analogies are also reflected through similar tasks in MIR and NLP. This survey reviews NLP methods applied to symbolic music generation and information retrieval studies following two axes. We first propose an overview of representations of symbolic music adapted from natural language sequential representations. Such representations are designed by considering the specificities of symbolic music. These representations are then processed by models. Such models, possibly originally developed for text and adapted for symbolic music, are trained on various tasks. We describe these models, in particular deep learning models, through different prisms, highlighting music-specialized mechanisms. We finally present a discussion surrounding the effective use of NLP tools for symbolic music data. This includes technical issues regarding NLP methods and fundamental differences between text and music, which may open several doors for further research into more effectively adapting NLP tools to symbolic MIR.


Fair Without Leveling Down: A New Intersectional Fairness Definition

arXiv.org Artificial Intelligence

In this work, we consider the problem of intersectional group fairness in the classification setting, where the objective is to learn discrimination-free models in the presence of several intersecting sensitive groups. First, we illustrate various shortcomings of existing fairness measures commonly used to capture intersectional fairness. Then, we propose a new definition called the $\alpha$-Intersectional Fairness, which combines the absolute and the relative performance across sensitive groups and can be seen as a generalization of the notion of differential fairness. We highlight several desirable properties of the proposed definition and analyze its relation to other fairness measures. Finally, we benchmark multiple popular in-processing fair machine learning approaches using our new fairness definition and show that they do not achieve any improvement over a simple baseline. Our results reveal that the increase in fairness measured by previous definitions hides a "leveling down" effect, i.e., degrading the best performance over groups rather than improving the worst one.


A Tale of Two Laws of Semantic Change: Predicting Synonym Changes with Distributional Semantic Models

arXiv.org Artificial Intelligence

Lexical Semantic Change is the study of how the meaning of words evolves through time. Another related question is whether and how lexical relations over pairs of words, such as synonymy, change over time. There are currently two competing, apparently opposite hypotheses in the historical linguistic literature regarding how synonymous words evolve: the Law of Differentiation (LD) argues that synonyms tend to take on different meanings over time, whereas the Law of Parallel Change (LPC) claims that synonyms tend to undergo the same semantic change and therefore remain synonyms. So far, there has been little research using distributional models to assess to what extent these laws apply on historical corpora. In this work, we take a first step toward detecting whether LD or LPC operates for given word pairs. After recasting the problem into a more tractable task, we combine two linguistic resources to propose the first complete evaluation framework on this problem and provide empirical evidence in favor of a dominance of LD. We then propose various computational approaches to the problem using Distributional Semantic Models and grounded in recent literature on Lexical Semantic Change detection. Our best approaches achieve a balanced accuracy above 0.6 on our dataset. We discuss challenges still faced by these approaches, such as polysemy or the potential confusion between synonymy and hypernymy.


Fiedler Random Fields: A Large-Scale Spectral Approach to Statistical Network Modeling

Neural Information Processing Systems

Statistical models for networks have been typically committed to strong prior assumptions concerning the form of the modeled distributions. Moreover, the vast majority of currently available models are explicitly designed for capturing some specific graph properties (such as power-law degree distributions), which makes them unsuitable for application to domains where the behavior of the target quantities is not known a priori. The key contribution of this paper is twofold. First, we introduce the Fiedler delta statistic, based on the Laplacian spectrum of graphs, which allows to dispense with any parametric assumption concerning the modeled network properties. Second, we use the defined statistic to develop the Fiedler random field model, which allows for efficient estimation of edge distributions over large-scale random networks. After analyzing the dependence structure involved in Fiedler random fields, we estimate them over several real-world networks, showing that they achieve a much higher modeling accuracy than other well-known statistical approaches.


Spectral Estimation of Conditional Random Graph Models for Large-Scale Network Data

arXiv.org Machine Learning

Generative models for graphs have been typically committed to strong prior assumptions concerning the form of the modeled distributions. Moreover, the vast majority of currently available models are either only suitable for characterizing some particular network properties (such as degree distribution or clustering coefficient), or they are aimed at estimating joint probability distributions, which is often intractable in large-scale networks. In this paper, we first propose a novel network statistic, based on the Laplacian spectrum of graphs, which allows to dispense with any parametric assumption concerning the modeled network properties. Second, we use the defined statistic to develop the Fiedler random graph model, switching the focus from the estimation of joint probability distributions to a more tractable conditional estimation setting. After analyzing the dependence structure characterizing Fiedler random graphs, we evaluate them experimentally in edge prediction over several real-world networks, showing that they allow to reach a much higher prediction accuracy than various alternative statistical models.


Benchmarking Non-Parametric Statistical Tests

Neural Information Processing Systems

Although nonparametric tests have already been proposed for that purpose, statistical significance tests for nonstandard measures (different from the classification error) are less often used in the literature. This paper is an attempt at empirically verifying how these tests compare with more classical tests, on various conditions. More precisely, using a very large dataset to estimate the whole "population", we analyzed the behavior of several statistical test, varying the class unbalance, the compared models, the performance measure, and the sample size. The main result is that providing big enough evaluation sets nonparametric tests are relatively reliable in all conditions.


Benchmarking Non-Parametric Statistical Tests

Neural Information Processing Systems

Although nonparametric tests have already been proposed for that purpose, statisticalsignificance tests for nonstandard measures (different from the classification error) are less often used in the literature. This paper is an attempt at empirically verifying how these tests compare with more classical tests, on various conditions. More precisely, using a very large dataset to estimate the whole "population", we analyzed the behavior ofseveral statistical test, varying the class unbalance, the compared models, the performance measure, and the sample size. The main result isthat providing big enough evaluation sets nonparametric tests are relatively reliable in all conditions.