Goto

Collaborating Authors

 Kejriwal, Mayank


Navigating Semantic Relations: Challenges for Language Models in Abstract Common-Sense Reasoning

arXiv.org Artificial Intelligence

Large language models (LLMs) have achieved remarkable performance in generating human-like text and solving reasoning tasks of moderate complexity, such as question-answering and mathematical problem-solving. However, their capabilities in tasks requiring deeper cognitive skills, such as common-sense understanding and abstract reasoning, remain under-explored. In this paper, we systematically evaluate abstract common-sense reasoning in LLMs using the ConceptNet knowledge graph. We propose two prompting approaches: instruct prompting, where models predict plausible semantic relationships based on provided definitions, and few-shot prompting, where models identify relations using examples as guidance. Our experiments with the gpt-4o-mini model show that in instruct prompting, consistent performance is obtained when ranking multiple relations but with substantial decline when the model is restricted to predicting only one relation. In few-shot prompting, the model's accuracy improves significantly when selecting from five relations rather than the full set, although with notable bias toward certain relations. These results suggest significant gaps still, even in commercially used LLMs' abstract common-sense reasoning abilities, compared to human-level understanding. However, the findings also highlight the promise of careful prompt engineering, based on selective retrieval, for obtaining better performance.


Humanlike Cognitive Patterns as Emergent Phenomena in Large Language Models

arXiv.org Artificial Intelligence

Research on emergent patterns in Large Language Models (LLMs) has gained significant traction in both psychology and artificial intelligence, motivating the need for a comprehensive review that offers a synthesis of this complex landscape. In this article, we systematically review LLMs' capabilities across three important cognitive domains: decision-making biases, reasoning, and creativity. We use empirical studies drawing on established psychological tests and compare LLMs' performance to human benchmarks. On decision-making, our synthesis reveals that while LLMs demonstrate several human-like biases, some biases observed in humans are absent, indicating cognitive patterns that only partially align with human decision-making. On reasoning, advanced LLMs like GPT-4 exhibit deliberative reasoning akin to human System-2 thinking, while smaller models fall short of human-level performance. A distinct dichotomy emerges in creativity: while LLMs excel in language-based creative tasks, such as storytelling, they struggle with divergent thinking tasks that require real-world context. Nonetheless, studies suggest that LLMs hold considerable potential as collaborators, augmenting creativity in human-machine problem-solving settings. Discussing key limitations, we also offer guidance for future research in areas such as memory, attention, and open-source model development.


GRASP: A Grid-Based Benchmark for Evaluating Commonsense Spatial Reasoning

arXiv.org Artificial Intelligence

Spatial reasoning, an important faculty of human cognition with many practical applications, is one of the core commonsense skills that is not purely language-based and, for satisfying (as opposed to optimal) solutions, requires some minimum degree of planning. Existing benchmarks of Commonsense Spatial Reasoning (CSR) tend to evaluate how Large Language Models (LLMs) interpret text-based spatial descriptions rather than directly evaluate a plan produced by the LLM in response to a spatial reasoning scenario. In this paper, we construct a large-scale benchmark called $\textbf{GRASP}$, which consists of 16,000 grid-based environments where the agent is tasked with an energy collection problem. These environments include 100 grid instances instantiated using each of the 160 different grid settings, involving five different energy distributions, two modes of agent starting position, and two distinct obstacle configurations, as well as three kinds of agent constraints. Using GRASP, we compare classic baseline approaches, such as random walk and greedy search methods, with advanced LLMs like GPT-3.5-Turbo and GPT-4o. The experimental results indicate that even these advanced LLMs struggle to consistently achieve satisfactory solutions.


An Evaluation of Estimative Uncertainty in Large Language Models

arXiv.org Artificial Intelligence

Words of estimative probability (WEPs), such as ''maybe'' or ''probably not'' are ubiquitous in natural language for communicating estimative uncertainty, compared with direct statements involving numerical probability. Human estimative uncertainty, and its calibration with numerical estimates, has long been an area of study -- including by intelligence agencies like the CIA. This study compares estimative uncertainty in commonly used large language models (LLMs) like GPT-4 and ERNIE-4 to that of humans, and to each other. Here we show that LLMs like GPT-3.5 and GPT-4 align with human estimates for some, but not all, WEPs presented in English. Divergence is also observed when the LLM is presented with gendered roles and Chinese contexts. Further study shows that an advanced LLM like GPT-4 can consistently map between statistical and estimative uncertainty, but a significant performance gap remains. The results contribute to a growing body of research on human-LLM alignment.


Understanding and Estimating Domain Complexity Across Domains

arXiv.org Artificial Intelligence

Artificial Intelligence (AI) systems, trained in controlled environments, often struggle in real-world complexities. We propose a general framework for estimating domain complexity across diverse environments, like open-world learning and real-world applications. This framework distinguishes between intrinsic complexity (inherent to the domain) and extrinsic complexity (dependent on the AI agent). By analyzing dimensionality, sparsity, and diversity within these categories, we offer a comprehensive view of domain challenges. This approach enables quantitative predictions of AI difficulty during environment transitions, avoids bias in novel situations, and helps navigate the vast search spaces of open-world domains.


HALO: An Ontology for Representing Hallucinations in Generative Models

arXiv.org Artificial Intelligence

Recent progress in generative AI, including large language models (LLMs) like ChatGPT, has opened up significant opportunities in fields ranging from natural language processing to knowledge discovery and data mining. However, there is also a growing awareness that the models can be prone to problems such as making information up or `hallucinations', and faulty reasoning on seemingly simple problems. Because of the popularity of models like ChatGPT, both academic scholars and citizen scientists have documented hallucinations of several different types and severity. Despite this body of work, a formal model for describing and representing these hallucinations (with relevant meta-data) at a fine-grained level, is still lacking. In this paper, we address this gap by presenting the Hallucination Ontology or HALO, a formal, extensible ontology written in OWL that currently offers support for six different types of hallucinations known to arise in LLMs, along with support for provenance and experimental metadata. We also collect and publish a dataset containing hallucinations that we inductively gathered across multiple independent Web sources, and show that HALO can be successfully used to model this dataset and answer competency questions.


How does prompt engineering affect ChatGPT performance on unsupervised entity resolution?

arXiv.org Artificial Intelligence

Entity Resolution (ER) is the problem of semi-automatically determining when two entities refer to the same underlying entity, with applications ranging from healthcare to e-commerce. Traditional ER solutions required considerable manual expertise, including feature engineering, as well as identification and curation of training data. In many instances, such techniques are highly dependent on the domain. With recent advent in large language models (LLMs), there is an opportunity to make ER much more seamless and domain-independent. However, it is also well known that LLMs can pose risks, and that the quality of their outputs can depend on so-called prompt engineering. Unfortunately, a systematic experimental study on the effects of different prompting methods for addressing ER, using LLMs like ChatGPT, has been lacking thus far. This paper aims to address this gap by conducting such a study. Although preliminary in nature, our results show that prompting can significantly affect the quality of ER, although it affects some metrics more than others, and can also be dataset dependent.


A Knowledge Graph-Based Search Engine for Robustly Finding Doctors and Locations in the Healthcare Domain

arXiv.org Artificial Intelligence

Efficiently finding doctors and locations is an important search problem for patients in the healthcare domain, for which traditional information retrieval methods tend not to work optimally. In the last ten years, knowledge graphs (KGs) have emerged as a powerful way to combine the benefits of gleaning insights from semi-structured data using semantic modeling, natural language processing techniques like information extraction, and robust querying using structured query languages like SPARQL and Cypher. In this short paper, we present a KG-based search engine architecture for robustly finding doctors and locations in the healthcare domain. Early results demonstrate that our approach can lead to significantly higher coverage for complex queries without degrading quality.


A Formalism and Approach for Improving Robustness of Large Language Models Using Risk-Adjusted Confidence Scores

arXiv.org Artificial Intelligence

Large Language Models (LLMs), such as ChatGPT, have achieved impressive milestones in natural language processing (NLP). Despite their impressive performance, the models are known to pose important risks. As these models are deployed in real-world applications, a systematic understanding of different risks posed by these models on tasks such as natural language inference (NLI), is much needed. In this paper, we define and formalize two distinct types of risk: decision risk and composite risk. We also propose a risk-centric evaluation framework, and four novel metrics, for assessing LLMs on these risks in both in-domain and out-of-domain settings. Finally, we propose a risk-adjusted calibration method called DwD for helping LLMs minimize these risks in an overall NLI architecture. Detailed experiments, using four NLI benchmarks, three baselines and two LLMs, including ChatGPT, show both the practical utility of the evaluation framework, and the efficacy of DwD in reducing decision and composite risk. For instance, when using DwD, an underlying LLM is able to address an extra 20.1% of low-risk inference tasks (but which the LLM erroneously deems high-risk without risk adjustment) and skip a further 19.8% of high-risk tasks, which would have been answered incorrectly.


Named Entity Resolution in Personal Knowledge Graphs

arXiv.org Artificial Intelligence

Entity Resolution (ER) is the problem of determining when two entities refer to the same underlying entity. The problem has been studied for over 50 years, and most recently, has taken on new importance in an era of large, heterogeneous 'knowledge graphs' published on the Web and used widely in domains as wide ranging as social media, e-commerce and search. This chapter will discuss the specific problem of named ER in the context of personal knowledge graphs (PKGs). We begin with a formal definition of the problem, and the components necessary for doing high-quality and efficient ER. We also discuss some challenges that are expected to arise for Web-scale data. Next, we provide a brief literature review, with a special focus on how existing techniques can potentially apply to PKGs. We conclude the chapter by covering some applications, as well as promising directions for future research.