Keim, Daniel A.
Leveraging Color Channel Independence for Improved Unsupervised Object Detection
Jäckl, Bastian, Metz, Yannick, Schlegel, Udo, Keim, Daniel A., Fischer, Maximilian T.
Object-centric architectures can learn to extract distinct object representations from visual scenes, enabling downstream applications on the object level. Similarly to autoencoder-based image models, object-centric approaches have been trained on the unsupervised reconstruction loss of images encoded by RGB color spaces. In our work, we challenge the common assumption that RGB images are the optimal color space for unsupervised learning in computer vision. We discuss conceptually and empirically that other color spaces, such as HSV, bear essential characteristics for object-centric representation learning, like robustness to lighting conditions. We further show that models improve when requiring them to predict additional color channels. Specifically, we propose to transform the predicted targets to the RGB-S space, which extends RGB with HSV's saturation component and leads to markedly better reconstruction and disentanglement for five common evaluation datasets. The use of composite color spaces can be implemented with basically no computational overhead, is agnostic of the models' architecture, and is universally applicable across a wide range of visual computing tasks and training types. The findings of our approach encourage additional investigations in computer vision tasks beyond object-centric learning.
Cutting Through the Clutter: The Potential of LLMs for Efficient Filtration in Systematic Literature Reviews
Joos, Lucas, Keim, Daniel A., Fischer, Maximilian T.
In academic research, systematic literature reviews are foundational and highly relevant, yet tedious to create due to the high volume of publications and labor-intensive processes involved. Systematic selection of relevant papers through conventional means like keyword-based filtering techniques can sometimes be inadequate, plagued by semantic ambiguities and inconsistent terminology, which can lead to sub-optimal outcomes. To mitigate the required extensive manual filtering, we explore and evaluate the potential of using Large Language Models (LLMs) to enhance the efficiency, speed, and precision of literature review filtering, reducing the amount of manual screening required. By using models as classification agents acting on a structured database only, we prevent common problems inherent in LLMs, such as hallucinations. We evaluate the real-world performance of such a setup during the construction of a recent literature survey paper with initially more than 8.3k potentially relevant articles under consideration and compare this with human performance on the same dataset. Our findings indicate that employing advanced LLMs like GPT-4o, Claude 3.5 Sonnet, Gemini 1.5 Flash, or Llama3 with simple prompting can significantly reduce the time required for literature filtering - from usually weeks of manual research to only a few minutes. Simultaneously, we crucially show that false negatives can indeed be controlled through a consensus scheme, achieving recalls >98.8% at or even beyond the typical human error threshold, thereby also providing for more accurate and relevant articles selected. Our research not only demonstrates a substantial improvement in the methodology of literature reviews but also sets the stage for further integration and extensive future applications of responsible AI in academic research practices.
Revealing the Unwritten: Visual Investigation of Beam Search Trees to Address Language Model Prompting Challenges
Spinner, Thilo, Kehlbeck, Rebecca, Sevastjanova, Rita, Stähle, Tobias, Keim, Daniel A., Deussen, Oliver, Spitz, Andreas, El-Assady, Mennatallah
The growing popularity of generative language models has amplified interest in interactive methods to guide model outputs. Prompt refinement is considered one of the most effective means to influence output among these methods. We identify several challenges associated with prompting large language models, categorized into data- and model-specific, linguistic, and socio-linguistic challenges. A comprehensive examination of model outputs, including runner-up candidates and their corresponding probabilities, is needed to address these issues. The beam search tree, the prevalent algorithm to sample model outputs, can inherently supply this information. Consequently, we introduce an interactive visual method for investigating the beam search tree, facilitating analysis of the decisions made by the model during generation. We quantitatively show the value of exposing the beam search tree and present five detailed analysis scenarios addressing the identified challenges. Our methodology validates existing results and offers additional insights.
Visual Explanations with Attributions and Counterfactuals on Time Series Classification
Schlegel, Udo, Oelke, Daniela, Keim, Daniel A., El-Assady, Mennatallah
With the rising necessity of explainable artificial intelligence (XAI), we see an increase in task-dependent XAI methods on varying abstraction levels. XAI techniques on a global level explain model behavior and on a local level explain sample predictions. We propose a visual analytics workflow to support seamless transitions between global and local explanations, focusing on attributions and counterfactuals on time series classification. In particular, we adapt local XAI techniques (attributions) that are developed for traditional datasets (images, text) to analyze time series classification, a data type that is typically less intelligible to humans. To generate a global overview, we apply local attribution methods to the data, creating explanations for the whole dataset. These explanations are projected onto two dimensions, depicting model behavior trends, strategies, and decision boundaries. To further inspect the model decision-making as well as potential data errors, a what-if analysis facilitates hypothesis generation and verification on both the global and local levels. We constantly collected and incorporated expert user feedback, as well as insights based on their domain knowledge, resulting in a tailored analysis workflow and system that tightly integrates time series transformations into explanations. Lastly, we present three use cases, verifying that our technique enables users to (1)~explore data transformations and feature relevance, (2)~identify model behavior and decision boundaries, as well as, (3)~the reason for misclassifications.
A Deep Dive into Perturbations as Evaluation Technique for Time Series XAI
Schlegel, Udo, Keim, Daniel A.
Explainable Artificial Intelligence (XAI) has gained significant attention recently as the demand for transparency and interpretability of machine learning models has increased. In particular, XAI for time series data has become increasingly important in finance, healthcare, and climate science. However, evaluating the quality of explanations, such as attributions provided by XAI techniques, remains challenging. This paper provides an in-depth analysis of using perturbations to evaluate attributions extracted from time series models. A perturbation analysis involves systematically modifying the input data and evaluating the impact on the attributions generated by the XAI method. We apply this approach to several state-of-the-art XAI techniques and evaluate their performance on three time series classification datasets. Our results demonstrate that the perturbation analysis approach can effectively evaluate the quality of attributions and provide insights into the strengths and limitations of XAI techniques. Such an approach can guide the selection of XAI methods for time series data, e.g., focusing on return time rather than precision, and facilitate the development of more reliable and interpretable machine learning models for time series analysis.
An Empirical Study of Explainable AI Techniques on Deep Learning Models For Time Series Tasks
Schlegel, Udo, Oelke, Daniela, Keim, Daniel A., El-Assady, Mennatallah
Decision explanations of machine learning black-box models are often generated by applying Explainable AI (XAI) techniques. However, many proposed XAI methods produce unverified outputs. Evaluation and verification are usually achieved with a visual interpretation by humans on individual images or text. In this preregistration, we propose an empirical study and benchmark framework to apply attribution methods for neural networks developed for images and text data on time series. We present a methodology to automatically evaluate and rank attribution techniques on time series using perturbation methods to identify reliable approaches.
Towards a Rigorous Evaluation of XAI Methods on Time Series
Schlegel, Udo, Arnout, Hiba, El-Assady, Mennatallah, Oelke, Daniela, Keim, Daniel A.
Explainable Artificial Intelligence (XAI) methods are typically deployed to explain and debug black-box machine learning models. However, most proposed XAI methods are black-boxes themselves and designed for images. Thus, they rely on visual interpretability to evaluate and prove explanations. In this work, we apply XAI methods previously used in the image and text-domain on time series. We present a methodology to test and evaluate various XAI methods on time series by introducing new verification techniques to incorporate the temporal dimension. We further conduct preliminary experiments to assess the quality of selected XAI method explanations with various verification methods on a range of datasets and inspecting quality metrics on it. We demonstrate that in our initial experiments, SHAP works robust for all models, but others like DeepLIFT, LRP, and Saliency Maps work better with specific architectures.