Goto

Collaborating Authors

 Kawato, Mitsuo


Integration of Visual and Somatosensory Information for Preshaping Hand in Grasping Movements

Neural Information Processing Systems

The primate brain must solve two important problems in grasping movements. The first problem concerns the recognition of grasped objects: specifically, how does the brain integrate visual and motor information on a grasped object? The second problem concerns hand shape planning: specifically, how does the brain design the hand configuration suited to the shape of the object and the manipulation task? A neural network model that solves these problems has been developed. The operations of the network are divided into a learning phase and an optimization phase. In the learning phase, internal representations, which depend on the grasped objects and the task, are acquired by integrating visual and somatosensory information. In the optimization phase, the most suitable hand shape for grasping an object is determined by using a relaxation computation of the network.


Integration of Visual and Somatosensory Information for Preshaping Hand in Grasping Movements

Neural Information Processing Systems

The primate brain must solve two important problems in grasping movements. Thefirst problem concerns the recognition of grasped objects: specifically, how does the brain integrate visual and motor information on a grasped object? The second problem concerns hand shape planning: specifically, how does the brain design the hand configuration suited to the shape of the object and the manipulation task? A neural network model that solves these problems has been developed.


Physiologically Based Speech Synthesis

Neural Information Processing Systems

This study demonstrates a paradigm for modeling speech production basedon neural networks. Using physiological data from speech utterances, a neural network learns the forward dynamics relating motor commands to muscles and the ensuing articulator behavior that allows articulator trajectories to be generated from motor commands constrained by phoneme input strings and global performance parameters. From these movement trajectories, a second neuralnetwork generates PARCOR parameters that are then used to synthesize the speech acoustics.


Integration of Visual and Somatosensory Information for Preshaping Hand in Grasping Movements

Neural Information Processing Systems

The primate brain must solve two important problems in grasping movements. The first problem concerns the recognition of grasped objects: specifically, how does the brain integrate visual and motor information on a grasped object? The second problem concerns hand shape planning: specifically, how does the brain design the hand configuration suited to the shape of the object and the manipulation task? A neural network model that solves these problems has been developed. The operations of the network are divided into a learning phase and an optimization phase. In the learning phase, internal representations, which depend on the grasped objects and the task, are acquired by integrating visual and somatosensory information. In the optimization phase, the most suitable hand shape for grasping an object is determined by using a relaxation computation of the network.


Physiologically Based Speech Synthesis

Neural Information Processing Systems

This study demonstrates a paradigm for modeling speech production based on neural networks. Using physiological data from speech utterances, a neural network learns the forward dynamics relating motor commands to muscles and the ensuing articulator behavior that allows articulator trajectories to be generated from motor commands constrained by phoneme input strings and global performance parameters. From these movement trajectories, a second neural network generates PARCOR parameters that are then used to synthesize the speech acoustics.


Forward Dynamics Modeling of Speech Motor Control Using Physiological Data

Neural Information Processing Systems

We propose a paradigm for modeling speech production based on neural networks. We focus on characteristics of the musculoskeletal system. Using real physiological data - articulator movements and EMG from muscle activitya neural network learns the forward dynamics relating motor commands to muscles and the ensuing articulator behavior. After learning, simulated perturbations, were used to asses properties of the acquired model, such as natural frequency, damping, and interarticulator couplings. Finally, a cascade neural network is used to generate continuous motor commands from a sequence of discrete articulatory targets.


Forward Dynamics Modeling of Speech Motor Control Using Physiological Data

Neural Information Processing Systems

We propose a paradigm for modeling speech production based on neural networks. We focus on characteristics of the musculoskeletal system. Using real physiological data - articulator movements and EMG from muscle activitya neuralnetwork learns the forward dynamics relating motor commands to muscles and the ensuing articulator behavior. After learning, simulated perturbations, were used to asses properties of the acquired model, such as natural frequency, damping, and interarticulator couplings. Finally, a cascade neural network is used to generate continuous motor commands from a sequence of discrete articulatory targets.


Simulation of Optimal Movements Using the Minimum-Muscle-Tension-Change Model

Neural Information Processing Systems

This work discusses various optimization techniques which were proposed in models for controlling arm movements. In particular, the minimum-muscle-tension-change model is investigated. A dynamic simulator of the monkey's arm, including seventeen single and double joint muscles, is utilized to generate horizontal hand movements. The hand trajectories produced by this algorithm are discussed.


Simulation of Optimal Movements Using the Minimum-Muscle-Tension-Change Model

Neural Information Processing Systems

This work discusses various optimization techniques which were proposed in models for controlling arm movements. In particular, the minimum-muscle-tension-change model is investigated. A dynamic simulator of the monkey's arm, including seventeen single and double joint muscles, is utilized to generate horizontal hand movements. The hand trajectories produced by this algorithm are discussed.


Simulation of Optimal Movements Using the Minimum-Muscle-Tension-Change Model

Neural Information Processing Systems

This work discusses various optimization techniques which were proposed in models for controlling arm movements. In particular, the minimum-muscle-tension-change model is investigated. A dynamic simulator of the monkey's arm, including seventeen single and double joint muscles, is utilized to generate horizontal hand movements. The hand trajectories produced by this algorithm are discussed.