Kaur, Prabhjot
Estimation of 3T MR images from 1.5T images regularized with Physics based Constraint
Kaur, Prabhjot, Minhas, Atul Singh, Ahuja, Chirag Kamal, Sao, Anil Kumar
Limited accessibility to high field MRI scanners (such as 7T, 11T) has motivated the development of post-processing methods to improve low field images. Several existing post-processing methods have shown the feasibility to improve 3T images to produce 7T-like images [3,18]. It has been observed that improving lower field (LF, <=1.5T) images comes with additional challenges due to poor image quality such as the function mapping 1.5T and higher field (HF, 3T) images is more complex than the function relating 3T and 7T images [10]. Except for [10], no method has been addressed to improve <=1.5T MRI images. Further, most of the existing methods [3,18] including [10] require example images, and also often rely on pixel to pixel correspondences between LF and HF images which are usually inaccurate for <=1.5T images. The focus of this paper is to address the unsupervised framework for quality improvement of 1.5T images and avoid the expensive requirements of example images and associated image registration. The LF and HF images are assumed to be related by a linear transformation (LT). The unknown HF image and unknown LT are estimated in alternate minimization framework. Further, a physics based constraint is proposed that provides an additional non-linear function relating LF and HF images in order to achieve the desired high contrast in estimated HF image. The experimental results demonstrate that the proposed approach provides processed 1.5T images, i.e., estimated 3T-like images with improved image quality, and is comparably better than the existing methods addressing similar problems. The improvement in image quality is also shown to provide better tissue segmentation and volume quantification as compared to scanner acquired 1.5T images.
Direct Punjabi to English speech translation using discrete units
Kaur, Prabhjot, Bush, L. Andrew M., Shi, Weisong
Speech-to-speech translation is yet to reach the same level of coverage as text-to-text translation systems. The current speech technology is highly limited in its coverage of over 7000 languages spoken worldwide, leaving more than half of the population deprived of such technology and shared experiences. With voice-assisted technology (such as social robots and speech-to-text apps) and auditory content (such as podcasts and lectures) on the rise, ensuring that the technology is available for all is more important than ever. Speech translation can play a vital role in mitigating technological disparity and creating a more inclusive society. With a motive to contribute towards speech translation research for low-resource languages, our work presents a direct speech-to-speech translation model for one of the Indic languages called Punjabi to English. Additionally, we explore the performance of using a discrete representation of speech called discrete acoustic units as input to the Transformer-based translation model. The model, abbreviated as Unit-to-Unit Translation (U2UT), takes a sequence of discrete units of the source language (the language being translated from) and outputs a sequence of discrete units of the target language (the language being translated to). Our results show that the U2UT model performs better than the Speech-to-Unit Translation (S2UT) model by a 3.69 BLEU score.
Predicting positive transfer for improved low-resource speech recognition using acoustic pseudo-tokens
San, Nay, Paraskevopoulos, Georgios, Arora, Aryaman, He, Xiluo, Kaur, Prabhjot, Adams, Oliver, Jurafsky, Dan
While massively multilingual speech models like wav2vec 2.0 XLSR-128 can be directly fine-tuned for automatic speech recognition (ASR), downstream performance can still be relatively poor on languages that are under-represented in the pre-training data. Continued pre-training on 70-200 hours of untranscribed speech in these languages can help -- but what about languages without that much recorded data? For such cases, we show that supplementing the target language with data from a similar, higher-resource 'donor' language can help. For example, continued pre-training on only 10 hours of low-resource Punjabi supplemented with 60 hours of donor Hindi is almost as good as continued pretraining on 70 hours of Punjabi. By contrast, sourcing data from less similar donors like Bengali does not improve ASR performance. To inform donor language selection, we propose a novel similarity metric based on the sequence distribution of induced acoustic units: the Acoustic Token Distribution Similarity (ATDS). Across a set of typologically different target languages (Punjabi, Galician, Iban, Setswana), we show that the ATDS between the target language and its candidate donors precisely predicts target language ASR performance.